”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 编码面试中解决问题的终极指南

编码面试中解决问题的终极指南

发布于2024-11-17
浏览:327

Ultimate guide for problem solving in coding interviews

Common Strategies for Coding Interview Questions

Two Pointers

The two pointers technique is often used to solve array-related problems efficiently. It involves using two pointers that either move towards each other or in the same direction.

Example: Finding a pair of numbers in a sorted array that sum up to a target value.

/**
 * Finds a pair of numbers in a sorted array that sum up to a target value.
 * Uses the two-pointer technique for efficient searching.
 * 
 * @param {number[]} arr - The sorted array of numbers to search through.
 * @param {number} target - The target sum to find.
 * @returns {number[]|null} - Returns an array containing the pair if found, or null if not found.
 */
function findPairWithSum(arr, target) {
  // Initialize two pointers: one at the start and one at the end of the array
  let left = 0;
  let right = arr.length - 1;

  // Continue searching while the left pointer is less than the right pointer
  while (left 



Sliding Window

The sliding window technique is useful for solving problems that involve contiguous sequences in arrays or strings.

Example: Finding the maximum sum of a subarray of size k.

/**
 * Finds the maximum sum of a subarray of size k in the given array.
 * @param {number[]} arr - The input array of numbers.
 * @param {number} k - The size of the subarray.
 * @returns {number|null} The maximum sum of a subarray of size k, or null if the array length is less than k.
 */
function maxSubarraySum(arr, k) {
  // Check if the array length is less than k
  if (arr.length  maxSum) {
      maxSum = windowSum;
      console.log(`New max sum found: ${maxSum}, Window: [${arr.slice(i - k   1, i   1)}]`);
    }
  }

  console.log(`Final max sum: ${maxSum}`);
  return maxSum;
}

// Example usage
const array = [1, 4, 2, 10, 23, 3, 1, 0, 20];
const k = 4;
maxSubarraySum(array, k);

Hash Table

Hash tables are excellent for solving problems that require quick lookups or counting occurrences.

Example: Finding the first non-repeating character in a string.

/**
 * Finds the first non-repeating character in a given string.
 * @param {string} str - The input string to search.
 * @returns {string|null} The first non-repeating character, or null if not found.
 */
function firstNonRepeatingChar(str) {
  const charCount = new Map();

  // Count occurrences of each character
  for (let char of str) {
    charCount.set(char, (charCount.get(char) || 0)   1);
    console.log(`Character ${char} count: ${charCount.get(char)}`);
  }

  // Find the first character with count 1
  for (let char of str) {
    if (charCount.get(char) === 1) {
      console.log(`First non-repeating character found: ${char}`);
      return char;
    }
  }

  console.log("No non-repeating character found");
  return null;
}

// Example usage
const inputString = "aabccdeff";
firstNonRepeatingChar(inputString);

These strategies demonstrate efficient ways to solve common coding interview problems. The verbose logging in each example helps to understand the step-by-step process of the algorithms, which can be crucial during interviews to explain your thought process.

Here's a code block demonstrating how to use maps to better understand some of these operations:

// Create a new Map
const fruitInventory = new Map();

// Set key-value pairs
fruitInventory.set('apple', 5);
fruitInventory.set('banana', 3);
fruitInventory.set('orange', 2);

console.log('Initial inventory:', fruitInventory);

// Get a value using a key
console.log('Number of apples:', fruitInventory.get('apple'));

// Check if a key exists
console.log('Do we have pears?', fruitInventory.has('pear'));

// Update a value
fruitInventory.set('banana', fruitInventory.get('banana')   2);
console.log('Updated banana count:', fruitInventory.get('banana'));

// Delete a key-value pair
fruitInventory.delete('orange');
console.log('Inventory after removing oranges:', fruitInventory);

// Iterate over the map
console.log('Current inventory:');
fruitInventory.forEach((count, fruit) => {
  console.log(`${fruit}: ${count}`);
});

// Get the size of the map
console.log('Number of fruit types:', fruitInventory.size);

// Clear the entire map
fruitInventory.clear();
console.log('Inventory after clearing:', fruitInventory);

This example demonstrates various Map operations:

  1. Creating a new Map
  2. Adding key-value pairs with
  3. Retrieving values with
  4. Checking for key existence with
  5. Updating values
  6. Deleting key-value pairs with
  7. Iterating over the Map with
  8. Getting the size of the Map
  9. Clearing the entire Map with These operations are similar to the ones used in the firstNonRepeatingChar function, where we use a Map to count character occurrences and then search for the first character with a count of 1.

Dynamic Programming Tutorial

Dynamic programming is a powerful algorithmic technique used to solve complex problems by breaking them down into simpler subproblems. Let's explore this concept with an example of calculating Fibonacci numbers.

/**
 * Calculates the nth Fibonacci number using dynamic programming.
 * @param {number} n - The position of the Fibonacci number to calculate.
 * @returns {number} The nth Fibonacci number.
 */
function fibonacci(n) {
  // Initialize an array to store Fibonacci numbers
  const fib = new Array(n   1);

  // Base cases
  fib[0] = 0;
  fib[1] = 1;

  console.log(`F(0) = ${fib[0]}`);
  console.log(`F(1) = ${fib[1]}`);

  // Calculate Fibonacci numbers iteratively
  for (let i = 2; i 



This example demonstrates how dynamic programming can efficiently calculate Fibonacci numbers by storing previously computed values and using them for future calculations.

Binary Search Tutorial

Binary search is an efficient algorithm for finding an element in a sorted array. Here's an implementation with detailed logging:

/**
 * Performs a binary search on a sorted array.
 * @param {number[]} arr - The sorted array to search.
 * @param {number} target - The value to find.
 * @returns {number} The index of the target if found, or -1 if not found.
 */
function binarySearch(arr, target) {
  let left = 0;
  let right = arr.length - 1;

  while (left  ${target}, searching left half`);
      right = mid - 1;
    }
  }

  console.log(`Target ${target} not found in the array`);
  return -1;
}

// Example usage
const sortedArray = [1, 3, 5, 7, 9, 11, 13, 15];
const target = 7;
binarySearch(sortedArray, target);

This implementation shows how binary search efficiently narrows down the search range by half in each iteration, making it much faster than linear search for large sorted arrays.

  • Depth-First Search (DFS)
  • Breadth-First Search (BFS)
  • Heap (Priority Queue)
  • Trie (Prefix Tree)
  • Union-Find (Disjoint Set)
  • Topological Sort

Depth-First Search (DFS)

Depth-First Search is a graph traversal algorithm that explores as far as possible along each branch before backtracking. Here's an example implementation for a graph represented as an adjacency list:

class Graph {
  constructor() {
    this.adjacencyList = {};
  }

  addVertex(vertex) {
    if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
  }

  addEdge(v1, v2) {
    this.adjacencyList[v1].push(v2);
    this.adjacencyList[v2].push(v1);
  }

  dfs(start) {
    const result = [];
    const visited = {};
    const adjacencyList = this.adjacencyList;

    (function dfsHelper(vertex) {
      if (!vertex) return null;
      visited[vertex] = true;
      result.push(vertex);
      console.log(`Visiting vertex: ${vertex}`);

      adjacencyList[vertex].forEach(neighbor => {
        if (!visited[neighbor]) {
          console.log(`Exploring neighbor: ${neighbor} of vertex: ${vertex}`);
          return dfsHelper(neighbor);
        } else {
          console.log(`Neighbor: ${neighbor} already visited`);
        }
      });
    })(start);

    return result;
  }
}

// Example usage
const graph = new Graph();
['A', 'B', 'C', 'D', 'E', 'F'].forEach(vertex => graph.addVertex(vertex));
graph.addEdge('A', 'B');
graph.addEdge('A', 'C');
graph.addEdge('B', 'D');
graph.addEdge('C', 'E');
graph.addEdge('D', 'E');
graph.addEdge('D', 'F');
graph.addEdge('E', 'F');

console.log(graph.dfs('A'));

Breadth-First Search (BFS)

BFS explores all vertices at the present depth before moving to vertices at the next depth level. Here's an implementation:

class Graph {
  // ... (same constructor, addVertex, and addEdge methods as above)

  bfs(start) {
    const queue = [start];
    const result = [];
    const visited = {};
    visited[start] = true;

    while (queue.length) {
      let vertex = queue.shift();
      result.push(vertex);
      console.log(`Visiting vertex: ${vertex}`);

      this.adjacencyList[vertex].forEach(neighbor => {
        if (!visited[neighbor]) {
          visited[neighbor] = true;
          queue.push(neighbor);
          console.log(`Adding neighbor: ${neighbor} to queue`);
        } else {
          console.log(`Neighbor: ${neighbor} already visited`);
        }
      });
    }

    return result;
  }
}

// Example usage (using the same graph as in DFS example)
console.log(graph.bfs('A'));

Heap (Priority Queue)

A heap is a specialized tree-based data structure that satisfies the heap property. Here's a simple implementation of a min-heap:

class MinHeap {
  constructor() {
    this.heap = [];
  }

  getParentIndex(i) {
    return Math.floor((i - 1) / 2);
  }

  getLeftChildIndex(i) {
    return 2 * i   1;
  }

  getRightChildIndex(i) {
    return 2 * i   2;
  }

  swap(i1, i2) {
    [this.heap[i1], this.heap[i2]] = [this.heap[i2], this.heap[i1]];
  }

  insert(key) {
    this.heap.push(key);
    this.heapifyUp(this.heap.length - 1);
  }

  heapifyUp(i) {
    let currentIndex = i;
    while (this.heap[currentIndex]  minHeap.insert(num));
console.log(minHeap.heap);
console.log(minHeap.extractMin());
console.log(minHeap.heap);

Trie (Prefix Tree)

A Trie is an efficient information retrieval data structure, commonly used for string searching:

class TrieNode {
  constructor() {
    this.children = {};
    this.isEndOfWord = false;
  }
}

class Trie {
  constructor() {
    this.root = new TrieNode();
  }

  insert(word) {
    let current = this.root;
    for (let char of word) {
      if (!current.children[char]) {
        current.children[char] = new TrieNode();
      }
      current = current.children[char];
    }
    current.isEndOfWord = true;
    console.log(`Inserted word: ${word}`);
  }

  search(word) {
    let current = this.root;
    for (let char of word) {
      if (!current.children[char]) {
        console.log(`Word ${word} not found`);
        return false;
      }
      current = current.children[char];
    }
    console.log(`Word ${word} ${current.isEndOfWord ? 'found' : 'not found'}`);
    return current.isEndOfWord;
  }

  startsWith(prefix) {
    let current = this.root;
    for (let char of prefix) {
      if (!current.children[char]) {
        console.log(`No words start with ${prefix}`);
        return false;
      }
      current = current.children[char];
    }
    console.log(`Found words starting with ${prefix}`);
    return true;
  }
}

// Example usage
const trie = new Trie();
['apple', 'app', 'apricot', 'banana'].forEach(word => trie.insert(word));
trie.search('app');
trie.search('application');
trie.startsWith('app');
trie.startsWith('ban');

Union-Find (Disjoint Set)

Union-Find is a data structure that keeps track of elements which are split into one or more disjoint sets:

class UnionFind {
  constructor(size) {
    this.parent = Array(size).fill().map((_, i) => i);
    this.rank = Array(size).fill(0);
    this.count = size;
  }

  find(x) {
    if (this.parent[x] !== x) {
      this.parent[x] = this.find(this.parent[x]);
    }
    return this.parent[x];
  }

  union(x, y) {
    let rootX = this.find(x);
    let rootY = this.find(y);

    if (rootX === rootY) return;

    if (this.rank[rootX] 



Topological Sort

Topological sorting is used for ordering tasks with dependencies. Here's an implementation using DFS:

class Graph {
  constructor() {
    this.adjacencyList = {};
  }

  addVertex(vertex) {
    if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
  }

  addEdge(v1, v2) {
    this.adjacencyList[v1].push(v2);
  }

  topologicalSort() {
    const visited = {};
    const stack = [];

    const dfsHelper = (vertex) => {
      visited[vertex] = true;
      this.adjacencyList[vertex].forEach(neighbor => {
        if (!visited[neighbor]) {
          dfsHelper(neighbor);
        }
      });
      stack.push(vertex);
      console.log(`Added ${vertex} to stack`);
    };

    for (let vertex in this.adjacencyList) {
      if (!visited[vertex]) {
        dfsHelper(vertex);
      }
    }

    return stack.reverse();
  }
}

// Example usage
const graph = new Graph();
['A', 'B', 'C', 'D', 'E', 'F'].forEach(vertex => graph.addVertex(vertex));
graph.addEdge('A', 'C');
graph.addEdge('B', 'C');
graph.addEdge('B', 'D');
graph.addEdge('C', 'E');
graph.addEdge('D', 'F');
graph.addEdge('E', 'F');

console.log(graph.topologicalSort());

These implementations provide a solid foundation for understanding and using these important algorithms and data structures in coding interviews and real-world applications.

版本声明 本文转载于:https://dev.to/turck/ultimate-guide-for-problem-solving-in-coding-interviews-48a2?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 大批
    大批
    方法是可以在对象上调用的 fns 数组是对象,因此它们在 JS 中也有方法。 slice(begin):将数组的一部分提取到新数组中,而不改变原始数组。 let arr = ['a','b','c','d','e']; // Usecase: Extract till index p...
    编程 发布于2024-11-18
  • 如何使用 MySQL 查找今天生日的用户?
    如何使用 MySQL 查找今天生日的用户?
    如何使用 MySQL 识别今天生日的用户使用 MySQL 确定今天是否是用户的生日涉及查找生日匹配的所有行今天的日期。这可以通过一个简单的 MySQL 查询来实现,该查询将存储为 UNIX 时间戳的生日与今天的日期进行比较。以下 SQL 查询将获取今天有生日的所有用户: FROM USERS ...
    编程 发布于2024-11-18
  • 除了“if”语句之外:还有哪些地方可以在不进行强制转换的情况下使用具有显式“bool”转换的类型?
    除了“if”语句之外:还有哪些地方可以在不进行强制转换的情况下使用具有显式“bool”转换的类型?
    无需强制转换即可上下文转换为 bool您的类定义了对 bool 的显式转换,使您能够在条件语句中直接使用其实例“t”。然而,这种显式转换提出了一个问题:“t”在哪里可以在不进行强制转换的情况下用作 bool?上下文转换场景C 标准指定了四种值可以根据上下文转换为 bool 的主要场景:语句:if、w...
    编程 发布于2024-11-18
  • 为什么 Go 中的 http.Request 类型使用指针?
    为什么 Go 中的 http.Request 类型使用指针?
    理解http.Request中的指针要求在Go编程语言中,指针对于有效处理大型结构至关重要。 http.Request 类型表示传入的 HTTP 请求,是这种结构的一个主要示例。在 Go 的语法中,指针是一种存储另一个值的地址的数据类型。当参数通过指针传递时,函数内对该参数所做的任何更改都会全局反映...
    编程 发布于2024-11-18
  • 在 Go 中使用 WebSocket 进行实时通信
    在 Go 中使用 WebSocket 进行实时通信
    构建需要实时更新的应用程序(例如聊天应用程序、实时通知或协作工具)需要一种比传统 HTTP 更快、更具交互性的通信方法。这就是 WebSockets 发挥作用的地方!今天,我们将探讨如何在 Go 中使用 WebSocket,以便您可以向应用程序添加实时功能。 在这篇文章中,我们将介绍: WebSoc...
    编程 发布于2024-11-18
  • 如何在 PHP 中组合两个关联数组,同时保留唯一 ID 并处理重复名称?
    如何在 PHP 中组合两个关联数组,同时保留唯一 ID 并处理重复名称?
    在 PHP 中组合关联数组在 PHP 中,将两个关联数组组合成一个数组是一项常见任务。考虑以下请求:问题描述:提供的代码定义了两个关联数组,$array1 和 $array2。目标是创建一个新数组 $array3,它合并两个数组中的所有键值对。 此外,提供的数组具有唯一的 ID,而名称可能重合。要求...
    编程 发布于2024-11-18
  • 如何在 Chrome 实验功能中使用 JavaScript 从浏览器连接到 TCP 套接字?
    如何在 Chrome 实验功能中使用 JavaScript 从浏览器连接到 TCP 套接字?
    使用 JavaScript 从浏览器连接到 TCP 套接字当您寻求在浏览器的 JavaScript 和 .NET 应用程序托管的 TCP 套接字之间建立双向通信时,当前的 Web 技术格局提出了挑战。到目前为止,流行的浏览器缺乏 JavaScript 的标准化套接字 API。然而,有希望的进展正在发...
    编程 发布于2024-11-18
  • 如果 Go 函数发生紧急情况,如何返回错误?
    如果 Go 函数发生紧急情况,如何返回错误?
    从 Go 中的 Defer 返回您遇到了这样的问题:如果 Go 中的函数发生紧急情况,您希望返回错误。这是对您的代码的分析和修复:func getReport(filename string) (rep report, err error) { rep.data = make(map[str...
    编程 发布于2024-11-18
  • Bootstrap 4 Beta 中的列偏移发生了什么?
    Bootstrap 4 Beta 中的列偏移发生了什么?
    Bootstrap 4 Beta:列偏移的删除和恢复Bootstrap 4 在其 Beta 1 版本中引入了重大更改柱子偏移了。然而,随着 Beta 2 的后续发布,这些变化已经逆转。从 offset-md-* 到 ml-auto在 Bootstrap 4 Beta 1 中, offset-md-*...
    编程 发布于2024-11-17
  • 如何有效调试 Python 代码:实用技巧和工具
    如何有效调试 Python 代码:实用技巧和工具
    Python 调试:实用技巧和工具在对 Python 代码进行故障排除时,拥有一个可供使用的调试技术工具包至关重要。以下是一些非常有效的技巧:PDB:强大的断点工具利用 PDB 模块设置断点并获得对代码执行的控制。通过插入 pdb.set_trace(),可以在特定点暂停执行并检查程序的当前状态:i...
    编程 发布于2024-11-17
  • 如何在不重启服务器的情况下清除MySQL查询缓存?
    如何在不重启服务器的情况下清除MySQL查询缓存?
    在不恢复服务器的情况下减轻 MySQL 查询缓存尽管 MySQL 查询缓存提供了更高的性能,但在需要时可能会出现这种情况可以在不中断服务器运行的情况下进行清除。以下是实现此目的的一些方法:重置查询缓存如果执行命令的用户具有重新加载权限,则可以使用以下命令显式删除查询缓存命令:RESET QUERY ...
    编程 发布于2024-11-17
  • MySQL 如何处理表名和列名的区分大小写?
    MySQL 如何处理表名和列名的区分大小写?
    MySQL 中列名和表名的大小写敏感度MySQL 中的大小写敏感度主题可能会让许多用户感到困惑。了解列名和表名的大小写敏感性对于确保正确的数据库操作和避免潜在的陷阱至关重要。表名表名是否区分大小写取决于在运行 MySQL 服务器的操作系统上。在基于 Unix 的系统(例如 Linux)上,表名称区分...
    编程 发布于2024-11-17
  • 为什么将常量引用绑定到临时对象会延长其生命周期?
    为什么将常量引用绑定到临时对象会延长其生命周期?
    为什么将常量引用绑定到临时对象会延长临时对象的生命周期?C 编程语言允许常量引用来延长临时对象的生命周期。这种行为一直是很多争论的主题,一些人认为它可以提高代码设计的性能和灵活性。这种语言功能的起源可以追溯到 1993 年,当时它被提议作为以下问题的解决方案:绑定到引用时临时变量的处理不一致。在没有...
    编程 发布于2024-11-17
  • 如何在共享主机的子目录中托管 Laravel 项目而不在 URL 中暴露“/public”
    如何在共享主机的子目录中托管 Laravel 项目而不在 URL 中暴露“/public”
    在共享主机上托管 Laravel 项目时,一个常见的挑战是确保 URL 不需要 /public 目录。这是在子目录中托管 Laravel 应用程序同时保持 URL 干净的分步指南。 第 1 步:将 Laravel 项目上传到服务器 登录您的托管帐户并访问您的文件管理器。 导航到 pu...
    编程 发布于2024-11-17
  • 编码面试中解决问题的终极指南
    编码面试中解决问题的终极指南
    Common Strategies for Coding Interview Questions Two Pointers The two pointers technique is often used to solve array-related problem...
    编程 发布于2024-11-17

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3