Recientemente comencé mi viaje sumergiéndome en el análisis de fútbol y creé un programa Python de muestra que hace referencia a https://understat.com/ para extraer datos de tiros de un solo juego.
Esto marca el comienzo de mi viaje hacia la manipulación de datos. Estoy emocionado de profundizar en este campo y espero compartir más actualizaciones a medida que avance.
Repositorio:
https://github.com/UribeJr/football-data-scraper-to-csv-exporter
#!/usr/bin/env python # coding: utf-8 # In[2]: #import modules and packages import requests from bs4 import BeautifulSoup import json import pandas as pd # In[3]: #scrape single game shots base_url = 'https://understat.com/match/' match = str(input("Enter your match ID: ")) url = base_url match # In[16]: res = requests.get(url) soup = BeautifulSoup(res.content, 'lxml') span = soup.find('span') script = soup.find_all('script') script # In[18]: string = script[1].string string # In[26]: #strip symbols so we only have json data index_start = string.index("('") 2 index_end = string.index("')") json_data = string[index_start:index_end] json_data = json_data.encode('utf8').decode('unicode_escape') data = json.loads(json_data) # In[35]: df_h = pd.DataFrame(data['h']) print("Home Team DataFrame:") print(df_h.head()) # In[37]: # Save the home team DataFrame to a CSV file df_h.to_csv('home_team_shots.csv', index=False) # In[ ]:
Luego, el programa extrae los datos de tiro del partido y convierte los datos de cada equipo local y visitante en un marco de datos separado. Luego, los marcos de datos se exportan como archivos CSV separados como referencia.
Descargo de responsabilidad: Todos los recursos proporcionados provienen en parte de Internet. Si existe alguna infracción de sus derechos de autor u otros derechos e intereses, explique los motivos detallados y proporcione pruebas de los derechos de autor o derechos e intereses y luego envíelos al correo electrónico: [email protected]. Lo manejaremos por usted lo antes posible.
Copyright© 2022 湘ICP备2022001581号-3