”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 在 Python 中使用 Pydantic 的最佳实践

在 Python 中使用 Pydantic 的最佳实践

发布于2024-08-06
浏览:553

Best Practices for Using Pydantic in Python

Pydantic is a Python library that simplifies data validation using type hints. It ensures data integrity and offers an easy way to create data models with automatic type checking and validation.

In software applications, reliable data validation is crucial to prevent errors, security issues, and unpredictable behavior.

This guide provides best practices for using Pydantic in Python projects, covering model definition, data validation, error handling, and performance optimization.


Installing Pydantic

To install Pydantic, use pip, the Python package installer, with the command:

pip install pydantic

This command installs Pydantic and its dependencies.

Basic Usage

Create Pydantic models by making classes that inherit from BaseModel. Use Python type annotations to specify each field's type:

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str

Pydantic supports various field types, including int, str, float, bool, list, and dict. You can also define nested models and custom types:

from typing import List, Optional
from pydantic import BaseModel

class Address(BaseModel):
    street: str
    city: str
    zip_code: Optional[str] = None

class User(BaseModel):
    id: int
    name: str
    email: str
    age: Optional[int] = None
    addresses: List[Address]

Once you've defined a Pydantic model, create instances by providing the required data. Pydantic will validate the data and raise errors if any field doesn't meet the specified requirements:

user = User(
    id=1,
    name="John Doe",
    email="[email protected]",
    addresses=[{"street": "123 Main St", "city": "Anytown", "zip_code": "12345"}]
)

print(user)

# Output:
# id=1 name='John Doe' email='[email protected]' age=None addresses=[Address(street='123 Main St', city='Anytown', zip_code='12345')]

Defining Pydantic Models

Pydantic models use Python type annotations to define data field types.

They support various built-in types, including:

  • Primitive types: str, int, float, bool
  • Collection types: list, tuple, set, dict
  • Optional types: Optional from the typing module for fields that can be None
  • Union types: Union from the typing module to specify a field can be one of several types

Example:

from typing import List, Dict, Optional, Union
from pydantic import BaseModel

class Item(BaseModel):
    name: str
    price: float
    tags: List[str]
    metadata: Dict[str, Union[str, int, float]]

class Order(BaseModel):
    order_id: int
    items: List[Item]
    discount: Optional[float] = None

Custom Types

In addition to built-in types, you can define custom types using Pydantic's conint, constr, and other constraint functions.

These allow you to add additional validation rules, such as length constraints on strings or value ranges for integers.

Example:

from pydantic import BaseModel, conint, constr

class Product(BaseModel):
    name: constr(min_length=2, max_length=50)
    quantity: conint(gt=0, le=1000)
    price: float

product = Product(name="Laptop", quantity=5, price=999.99)

Required vs. Optional Fields

By default, fields in a Pydantic model are required unless explicitly marked as optional.

If a required field is missing during model instantiation, Pydantic will raise a ValidationError.

Example:

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str

user = User(id=1, name="John Doe")


# Output
#  Field required [type=missing, input_value={'id': 1, 'name': 'John Doe'}, input_type=dict]

Optional Fields with Default Values

Fields can be made optional by using Optional from the typing module and providing a default value.

Example:

from pydantic import BaseModel
from typing import Optional

class User(BaseModel):
    id: int
    name: str
    email: Optional[str] = None

user = User(id=1, name="John Doe")

In this example, email is optional and defaults to None if not provided.

Nested Models

Pydantic allows models to be nested within each other, enabling complex data structures.

Nested models are defined as fields of other models, ensuring data integrity and validation at multiple levels.

Example:

from pydantic import BaseModel
from typing import Optional, List


class Address(BaseModel):
    street: str
    city: str
    zip_code: Optional[str] = None

class User(BaseModel):
    id: int
    name: str
    email: str
    addresses: List[Address]

user = User(
    id=1,
    name="John Doe",
    email="[email protected]",
    addresses=[{"street": "123 Main St", "city": "Anytown"}]
)

Best Practices for Managing Nested Data

When working with nested models, it's important to:

  • Validate data at each level: Ensure each nested model has its own validation rules and constraints.
  • Use clear and consistent naming conventions: This makes the structure of your data more readable and maintainable.
  • Keep models simple: Avoid overly complex nested structures. If a model becomes too complex, consider breaking it down into smaller, more manageable components.

Data Validation

Pydantic includes a set of built-in validators that handle common data validation tasks automatically.

These validators include:

  • Type validation: Ensures fields match the specified type annotations (e.g., int, str, list).
  • Range validation: Enforces value ranges and lengths using constraints like conint, constr, confloat.
  • Format validation: Checks specific formats, such as EmailStr for validating email addresses.
  • Collection validation: Ensures elements within collections (e.g., list, dict) conform to specified types and constraints.

These validators simplify the process of ensuring data integrity and conformity within your models.

Here are some examples demonstrating built-in validators:

from pydantic import BaseModel, EmailStr, conint, constr

class User(BaseModel):
    id: conint(gt=0)  # id must be greater than 0
    name: constr(min_length=2, max_length=50)  # name must be between 2 and 50 characters
    email: EmailStr  # email must be a valid email address
    age: conint(ge=18)  # age must be 18 or older

user = User(id=1, name="John Doe", email="[email protected]", age=25)

In this example, the User model uses built-in validators to ensure the id is greater than 0, the name is between 2 and 50 characters, the email is a valid email address, and the age is 18 or older.
To be able to use the email validator, you need to install an extension to pydantic:

pip install pydantic[email]

Custom Validators

Pydantic allows you to define custom validators for more complex validation logic.

Custom validators are defined using the @field_validator decorator within your model class.

Example of a custom validator:

from pydantic import BaseModel, field_validator


class Product(BaseModel):
    name: str
    price: float

    @field_validator('price')
    def price_must_be_positive(cls, value):
        if value 



Here, the price_must_be_positive validator ensures that the price field is a positive number.

Custom validators are registered automatically when you define them within a model using the @field_validator decorator. Validators can be applied to individual fields or across multiple fields.

Example of registering a validator for multiple fields:

from pydantic import BaseModel, field_validator


class Person(BaseModel):
    first_name: str
    last_name: str

    @field_validator('first_name', 'last_name')
    def names_cannot_be_empty(cls, value):
        if not value:
            raise ValueError('Name fields cannot be empty')
        return value

person = Person(first_name="John", last_name="Doe")

In this example, the names_cannot_be_empty validator ensures that both the first_name and last_name fields are not empty.

Using Config Classes

Pydantic models can be customized using an inner Config class.

This class allows you to set various configuration options that affect the model's behavior, such as validation rules, JSON serialization, and more.

Example of a Config class:

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str

    class Config:
        str_strip_whitespace = True  # Strip whitespace from strings
        str_min_length = 1  # Minimum length for any string field

user = User(id=1, name="  John Doe  ", email="[email protected]")

print(user)

# Output:
# id=1 name='John Doe' email='[email protected]'

In this example, the Config class is used to strip whitespace from string fields and enforce a minimum length of 1 for any string field.

Some common configuration options in Pydantic's Config class include:

  • str_strip_whitespace: Automatically strip leading and trailing whitespace from string fields.
  • str_min_length: Set a minimum length for any string field.
  • validate_default: Validate all fields, even those with default values.
  • validate_assignment: Enable validation on assignment to model attributes.
  • use_enum_values: Use the values of enums directly instead of the enum instances.
  • json_encoders: Define custom JSON encoders for specific types.

Error Handling

When Pydantic finds data that doesn't conform to the model's schema, it raises a ValidationError.

This error provides detailed information about the issue, including the field name, the incorrect value, and a description of the problem.

Here's an example of how default error messages are structured:

from pydantic import BaseModel, ValidationError, EmailStr

class User(BaseModel):
    id: int
    name: str
    email: EmailStr

try:
    user = User(id='one', name='John Doe', email='invalid-email')
except ValidationError as e:
    print(e.json())

# Output:
# [{"type":"int_parsing","loc":["id"],"msg":"Input should be a valid integer, unable to parse string as an integer","input":"one","url":"https://errors.pydantic.dev/2.8/v/int_parsing"},{"type":"value_error","loc":["email"],"msg":"value is not a valid email address: An email address must have an @-sign.","input":"invalid-email","ctx":{"reason":"An email address must have an @-sign."},"url":"https://errors.pydantic.dev/2.8/v/value_error"}]

In this example, the error message will indicate that id must be an integer and email must be a valid email address.

Customizing Error Messages

Pydantic allows you to customize error messages for specific fields by raising exceptions with custom messages in validators or by setting custom configurations.

Here’s an example of customizing error messages:

from pydantic import BaseModel, ValidationError, field_validator

class Product(BaseModel):
    name: str
    price: float

    @field_validator('price')
    def price_must_be_positive(cls, value):
        if value 



In this example, the error message for price is customized to indicate that it must be a positive number.

Best Practices for Error Reporting

Effective error reporting involves providing clear, concise, and actionable feedback to users or developers.

Here are some best practices:

  • Log errors: Use logging mechanisms to record validation errors for debugging and monitoring purposes.
  • Return user-friendly messages: When exposing errors to end-users, avoid technical jargon. Instead, provide clear instructions on how to correct the data.
  • Aggregate errors: When multiple fields are invalid, aggregate the errors into a single response to help users correct all issues at once.
  • Use consistent formats: Ensure that error messages follow a consistent format across the application for easier processing and understanding.

Examples of best practices in error reporting:

from pydantic import BaseModel, ValidationError, EmailStr
import logging

logging.basicConfig(level=logging.INFO)

class User(BaseModel):
    id: int
    name: str
    email: EmailStr

def create_user(data):
    try:
        user = User(**data)
        return user
    except ValidationError as e:
        logging.error("Validation error: %s", e.json())
        return {"error": "Invalid data provided", "details": e.errors()}

user_data = {'id': 'one', 'name': 'John Doe', 'email': 'invalid-email'}
response = create_user(user_data)
print(response)

# Output:
# ERROR:root:Validation error: [{"type":"int_parsing","loc":["id"],"msg":"Input should be a valid integer, unable to parse string as an integer","input":"one","url":"https://errors.pydantic.dev/2.8/v/int_parsing"},{"type":"value_error","loc":["email"],"msg":"value is not a valid email address: An email address must have an @-sign.","input":"invalid-email","ctx":{"reason":"An email address must have an @-sign."},"url":"https://errors.pydantic.dev/2.8/v/value_error"}]
# {'error': 'Invalid data provided', 'details': [{'type': 'int_parsing', 'loc': ('id',), 'msg': 'Input should be a valid integer, unable to parse string as an integer', 'input': 'one', 'url': 'https://errors.pydantic.dev/2.8/v/int_parsing'}, {'type': 'value_error', 'loc': ('email',), 'msg': 'value is not a valid email address: An email address must have an @-sign.', 'input': 'invalid-email', 'ctx': {'reason': 'An email address must have an @-sign.'}}]}

In this example, validation errors are logged, and a user-friendly error message is returned, helping maintain application stability and providing useful feedback to the user.


Performance Considerations

Lazy initialization is a technique that postpones the creation of an object until it is needed.

In Pydantic, this can be useful for models with fields that are costly to compute or fetch. By delaying the initialization of these fields, you can reduce the initial load time and improve performance.

Example of lazy initialization:

from pydantic import BaseModel
from functools import lru_cache

class DataModel(BaseModel):
    name: str
    expensive_computation: str = None

    @property
    @lru_cache(maxsize=1)
    def expensive_computation(self):
        # Simulate an expensive computation
        result = "Computed Value"
        return result

data_model = DataModel(name="Test")
print(data_model.expensive_computation)

In this example, the expensive_computation field is computed only when accessed for the first time, reducing unnecessary computations during model initialization.

Redundant Validation

Pydantic models automatically validate data during initialization.

However, if you know that certain data has already been validated or if validation is not necessary in some contexts, you can disable validation to improve performance.

This can be done using the model_construct method, which bypasses validation:

Example of avoiding redundant validation:

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str

# Constructing a User instance without validation
data = {'id': 1, 'name': 'John Doe', 'email': '[email protected]'}
user = User.model_construct(**data)

In this example, User.model_construct is used to create a User instance without triggering validation, which can be useful in performance-critical sections of your code.

Efficient Data Parsing

When dealing with large datasets or high-throughput systems, efficiently parsing raw data becomes critical.

Pydantic provides the model_validate_json method, which can be used to parse JSON or other serialized data formats directly into Pydantic models.

Example of efficient data parsing:

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str

json_data = '{"id": 1, "name": "John Doe", "email": "[email protected]"}'
user = User.model_validate_json(json_data)
print(user)

In this example, model_validate_json is used to parse JSON data into a User model directly, providing a more efficient way to handle serialized data.

Controlling Validation

Pydantic models can be configured to validate data only when necessary.

The validate_default and validate_assignment options in the Config class control when validation occurs, which can help improve performance:

  • validate_default: When set to False, only fields that are set during initialization are validated.
  • validate_assignment: When set to True, validation is performed on field assignment after the model is created.

Example configuration:

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str

    class Config:
        validate_default = False  # Only validate fields set during initialization
        validate_assignment = True  # Validate fields on assignment

user = User(id=1, name="John Doe", email="[email protected]")
user.email = "[email protected]"  # This assignment will trigger validation

In this example, validate_default is set to False to avoid unnecessary validation during initialization, and validate_assignment is set to True to ensure that fields are validated when they are updated.


Settings Management

Pydantic's BaseSettings class is designed for managing application settings, supporting environment variable loading and type validation.

This helps in configuring applications for different environments (e.g., development, testing, production).

Consider this .env file:

database_url=db
secret_key=sk
debug=False

Example of using BaseSettings:

from pydantic_settings import BaseSettings

class Settings(BaseSettings):
    database_url: str
    secret_key: str
    debug: bool = False

    class Config:
        env_file = ".env"

settings = Settings()
print(settings.model_dump())

# Output:
# {'database_url': 'db', 'secret_key': 'sk', 'debug': False}

In this example, settings are loaded from environment variables, and the Config class specifies that variables can be loaded from a .env file.

For using BaseSettings you will need to install an additional package:

pip install pydantic-settings

Managing settings effectively involves a few best practices:

  • Use environment variables: Store configuration values in environment variables to keep sensitive data out of your codebase.
  • Provide defaults: Define sensible default values for configuration settings to ensure the application runs with minimal configuration.
  • Separate environments: Use different configuration files or environment variables for different environments (e.g., .env.development, .env.production).
  • Validate settings: Use Pydantic's validation features to ensure all settings are correctly typed and within acceptable ranges.

Common Pitfalls and How to Avoid Them

One common mistake when using Pydantic is misapplying type annotations, which can lead to validation errors or unexpected behavior.

Here are a few typical mistakes and their solutions:

  • Misusing Union Types: Using Union incorrectly can complicate type validation and handling.
  • Optional Fields without Default Values: Forgetting to provide a default value for optional fields can lead to None values causing errors in your application.
  • Incorrect Type Annotations: Assigning incorrect types to fields can cause validation to fail. For example, using str for a field that should be an int.

Ignoring Performance Implications

Ignoring performance implications when using Pydantic can lead to slow applications, especially when dealing with large datasets or frequent model instantiations.

Here are some strategies to avoid performance bottlenecks:

  • Leverage Configuration Options: Use Pydantic's configuration options like validate_default and validate_assignment to control when validation occurs.
  • Optimize Nested Models: When working with nested models, ensure that you are not over-validating or duplicating validation logic.
  • Use Efficient Parsing Methods: Utilize model_validate_json and model_validate for efficient data parsing.
  • Avoid Unnecessary Validation: Use the model_construct method to create models without validation when the data is already known to be valid.

Overcomplicating Models

Overcomplicating Pydantic models can make them difficult to maintain and understand.

Here are some tips to keep models simple and maintainable:

  • Document Your Models: Use docstrings and comments to explain complex validation rules or business logic embedded in models.
  • Encapsulate Logic Appropriately: Keep validation and business logic within appropriate model methods or external utilities to avoid cluttering model definitions.
  • Use Inheritance Sparingly: While inheritance can promote code reuse, excessive use can make the model hierarchy complex and harder to follow.
  • Avoid Excessive Nesting: Deeply nested models can be hard to manage. Aim for a balanced level of nesting.

Conclusion

In this guide, we have covered various best practices for using Pydantic effectively in your Python projects.

We began with the basics of getting started with Pydantic, including installation, basic usage, and defining models. We then delved into advanced features like custom types, serialization and deserialization, and settings management.

Key performance considerations, such as optimizing model initialization and efficient data parsing, were highlighted to ensure your applications run smoothly.

We also discussed common pitfalls, such as misusing type annotations, ignoring performance implications, and overcomplicating models, and provided strategies to avoid them.

Applying these best practices in your real-world projects will help you leverage the full power of Pydantic, making your code more robust, maintainable, and performant.

版本声明 本文转载于:https://dev.to/devasservice/best-practices-for-using-pydantic-in-python-2021?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何将 JSON 字符串转换为 Python 字典?
    如何将 JSON 字符串转换为 Python 字典?
    如何将 JSON 字符串转换为 Python 字典JSON(JavaScript 对象表示法)是一种流行的数据格式,通常用于表示复杂的数据结构。在 Python 中,您可以使用 json 模块来处理 JSON 数据。一个常见的任务是将 JSON 字符串转换为 Python 字典。这允许您以键值对的形...
    编程 发布于2024-11-08
  • 治疗高血压的整体阿育吠陀方法
    治疗高血压的整体阿育吠陀方法
    管理高血压的整体阿育吠陀方法 阿育吠陀治疗高血压提供了一种自然和整体的方法来管理这一常见的健康问题。在阿育吠陀中,高血压通常与能量的不平衡有关,特别是皮塔和瓦塔。这种古老的医学体系旨在通过个性化治疗和生活方式改变来恢复平衡并促进整体健康。 治疗高血压的阿育吠陀疗法包括使用特定草药,如阿朱那、南非醉茄...
    编程 发布于2024-11-08
  • 如何设置 Y 轴范围以丰富多个子图布局中的可视化?
    如何设置 Y 轴范围以丰富多个子图布局中的可视化?
    设置子图轴范围背景在可视化中处理多个子图时,有必要控制每个子图的轴范围以确保正确的数据表示。本问题探讨如何在双子图布局中设置第二个子图的 y 轴范围。当 FFT 图出现异常尖峰,导致所需数据不可见时,就会出现此问题。解决方案要解决此问题,请在绘图后使用 pylab.ylim([bottom, top...
    编程 发布于2024-11-08
  • CSS 中的盒模型:制作精确布局的终极指南
    CSS 中的盒模型:制作精确布局的终极指南
    Web设计概念中,盒子模型(Box Model)是CSS中非常关注布局设计的基础知识领域。盒子模型解释了页面上元素的放置和定位方式,这会影响水平度和总体连贯性。 除了概述盒子模型的背景和边框之外,本指南还指导您完成填充、边距和盒子大小调整,以便您可以完全控制布局。要开始专业水平的 Web 项目设计,...
    编程 发布于2024-11-08
  • 什么是语法和语义
    什么是语法和语义
    如果您正在学习一门语言,您可能听说过“语法”这个词并且一直在处理它。 (该死的语法错误)。 几天前的晚上,我在想,我从来没有认真遵循过编程范式和技术,今天我开始从我经常听到的最小主题中学习(即使我已经记住了)。我创建了这个存储库。我采取的学习路径很有特色(在 LEARNING_LIST.md 文件中...
    编程 发布于2024-11-08
  • 如何在不切换焦点的情况下在后台打开新选项卡?
    如何在不切换焦点的情况下在后台打开新选项卡?
    在后台打开新选项卡而不进行焦点切换在这个问题中,用户寻求在单独的选项卡中打开新选项卡不会导致任何焦点转移到新选项卡。他们演示了使用 open() 和 focus() 方法的尝试,但在返回 Chrome 中的当前选项卡之前遇到了新选项卡的短暂闪烁。但是,提供的答案提供了使用事件的替代解决方案自定义事件...
    编程 发布于2024-11-08
  • 如何使用自定义语句扩展 Python 语法?
    如何使用自定义语句扩展 Python 语法?
    向 Python 语法添加新语句Python 的语法允许语句定义,例如 print、raise 和 with。虽然这些语句提供了广泛的功能,但可以扩展此语法以适应自定义语句。创建自定义语句涉及两个主要步骤创建自定义语句:修改语法: 您需要更新 Python 的语法以包含新的定义 陈述。这涉及到修改 ...
    编程 发布于2024-11-08
  • 使用 PHP 中的服务层模式实现简洁且可扩展的代码
    使用 PHP 中的服务层模式实现简洁且可扩展的代码
    服务层模式是一种流行的设计方法,用于处理 PHP 应用程序中的业务逻辑。通过将应用程序逻辑与框架分离,我们创建了一个可扩展、可测试和可维护的代码库。在本文中,我们将通过实际示例介绍服务层模式的基础知识、其优点以及如何在 PHP 应用程序中实现它。 什么是服务层模式? 服务层模式是在应...
    编程 发布于2024-11-08
  • 您能否在 C++ 中实现高效的二分搜索算法,将迭代器返回到搜索结果?
    您能否在 C++ 中实现高效的二分搜索算法,将迭代器返回到搜索结果?
    在 C 中搜索高效的二分搜索算法 程序员经常寻求实现高效的二分搜索算法,以提供对数时间复杂度的优势。一个常见的要求是算法返回一个指向搜索结果的迭代器,而不是一个指示其存在的简单布尔值。C 标准库在 标头中提供了 std::binary_search,但它仅返回一个布尔值。正如提问者所指出的,对于需...
    编程 发布于2024-11-08
  • 使用 Javascript 的心形图案代码
    使用 Javascript 的心形图案代码
    代码 let heart = ""; let size = 6; // Loop to print upper part of the heart for (let i = size / 2; i <= size; i = 2) { for (let j = 1; ...
    编程 发布于2024-11-08
  • 如何在 Chrome DevTools 中轻松识别和监控表单元素事件?
    如何在 Chrome DevTools 中轻松识别和监控表单元素事件?
    了解元素交互触发的事件要在可自定义表单元素上正确识别和处理事件,必须了解交互时触发的特定事件。 Chrome DevTools 提供了一个强大的工具,monitorEvents,来协助完成此过程。使用 monitorEvents()检查目标元素: 右键单击​​该元素并选择“Inspect”或在 De...
    编程 发布于2024-11-08
  • 为什么Go不支持传统继承?
    为什么Go不支持传统继承?
    Go中的继承Go为什么不支持传统类型继承?传统类型继承,即子类继承一个或多个父类的定义,不是 Go 编程语言的一项功能。创建者的基本原理在 Go 语言中FAQ,语言创建者解释说,面向对象的编程语言通常强调定义类型之间的关系,这些关系在 Go 中可以自动推断。 Go 类型不会显式指定类型关系,而是自动...
    编程 发布于2024-11-08
  • 如何在 Python 中创建虚拟环境
    如何在 Python 中创建虚拟环境
    Python 虚拟环境对于管理依赖关系和避免项目之间的冲突至关重要。本指南将引导您完成在 Python 中创建和激活虚拟环境的过程。 第 1 步:导航到您的项目目录 打开终端并导航到要设置 Python 虚拟环境的目录。您可以使用 cd 命令来执行此操作: cd /path/to/y...
    编程 发布于2024-11-08
  • 如何在 Go JSON 解组中处理嵌套数组?
    如何在 Go JSON 解组中处理嵌套数组?
    Golang JSON:通过解组处理嵌套数组在 Go 中,在解组后处理嵌套 JSON 数组时,理解错误至关重要“类型接口{}不支持索引。”当您尝试访问存储在interface{}变量中的JSON数组中的元素时,会出现此错误。要解决此问题,您需要利用类型断言将interface{}变量转换为底层数组类...
    编程 发布于2024-11-08
  • 如何在 Java 中组合路径
    如何在 Java 中组合路径
    组合 Java 中的路径C#/.NET 中的 System.IO.Path.Combine 方法允许将多个路径段组合成一个单一、有效的路径。 Java 提供了实现类似功能的替代方法。Path Object在 Java 7 及更高版本中,建议使用 java.nio.file.Path 类进行路径操作。...
    编程 发布于2024-11-08

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3