子集和问题是计算机科学和动态规划中的经典问题。给定一组正整数和一个目标和,任务是确定是否存在给定集合的子集,其元素之和等于目标和。
$sum) return isSubsetSum($set, $n - 1, $sum); // Check if the sum can be obtained by either including or excluding the last element return isSubsetSum($set, $n - 1, $sum) || isSubsetSum($set, $n - 1, $sum - $set[$n - 1]); } // Driver Code $set = array(1, 7, 4, 9, 2); $sum = 16; $n = count($set); if (isSubsetSum($set, $n, $sum) == true) echo "Found a subset with the given sum
"; else echo "No subset with the given sum
"; $sum = 25; $n = count($set); if (isSubsetSum($set, $n, $sum) == true) echo "Found a subset with the given sum."; else echo "No subset with the given sum."; ?>
Found a subset with the given sum. No subset with the given sum.
在提供的示例中,集合为 [1, 7, 4, 9, 2],目标和为 16 和 25。目标和为 25 的第二次调用返回 false,表示不存在子集加起来为 25。因此输出为 Found a subset with the给定 sum in first call。第二次调用中没有给定总和的子集。
= $set[$i-1]) $subset[$i][$j] = $subset[$i-1][$j] || $subset[$i - 1][$j - $set[$i-1]]; } } /* // uncomment this code to print table for (int i = 0; i
Found a subset with given sum.
在提供的示例中,集合为 [8, 15, 26, 35, 42, 59],目标和为 50。 函数调用 isSubsetSum($set, $ n, $sum) 返回 true,表示集合中存在子集 [8, 42],其总和为 50。因此,代码的输出为找到具有给定总和的子集。
总之,有两种不同的方法来解决子集和问题。第一个解决方案是递归方法,检查给定集合中是否存在总和等于目标总和的子集。它利用回溯来探索所有可能的组合。然而,该解决方案在最坏的情况下可能具有指数时间复杂度。
第二种解决方案利用动态规划并以自下而上的方式解决子集和问题。它构造一个表来存储中间结果,并有效地确定是否存在具有给定总和的子集。这种方法的时间复杂度为 O(n*sum),比递归解决方案更有效。这两种方法都可以用来解决子集和问题,动态规划解决方案对于较大的输入更有效。
免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。
Copyright© 2022 湘ICP备2022001581号-3