1. is the entry point for rendering the WebGL context

  2. We set up the basic HTML code and link the main.js file.

  3. In the main.js file we will access the canvas id to render webGL content.

Prepare the HTML Canvas

Within the main.js file add the following code which prepares the HTML canvas:

main.js

// get canvasconst canvas = document.getElementById(\\\"canvas\\\");// set width and height of canvascanvas.width = window.innerWidth;canvas.height = window.innerHeight;// get the webgl contextconst gl = canvas.getContext(\\\"webgl2\\\");
  1. Get the HTML canvas by id and store it in a variable called “canvas” (you can use any name).

  2. Set the canvas.width and canvas.height properties of the canvas by accessing the window.innerWidth and window.innerHeight. This sets the rendered display to the size of the browser window.

  3. Get the WebGL context using canvas.getContext(“webgl2”) and store it in a variable called “gl”.

Clear Color

main.js

gl.clearColor(0.1, 0.2, 0.3, 1.0);gl.clear(gl.DEPTH_BUFFER_BIT | gl.COLOR_BUFFER_BIT);

Before writing any webGL program you need to set the background color of your canvas. WebGL has two methods for making this happen.

clearColor() — is a method that sets a specific background color. It’s called “clearColor” because when you render WebGL into the HTML canvas, CSS sets the background to the color black. When you call clearColor(), it clears the default color and sets whatever color you want. We can see this below.

Note: The clearColor() has 4 parameters (r, g, b, a)

clear() — after clearColor() is called and an explicit background color is set,
**clear()** must be called to “clear” or reset the buffers to the preset values (the buffers are temporary storage for color and depth information).

The clear() method is one of the drawing methods which means it’s the method that actually renders the color. Without calling the clear() method the canvas won’t show the clearColor. The clear() parameter options are,
are gl.COLOR_BUFFER_BIT, gl.DEPTH_BUFFER_BIT, or gl.STENCIL_BUFFER_BIT.

In the code below you can add multiple parameters to reset in different scenarios.

  1. gl.DEPTH_BUFFER_BIT — indicates buffers for pixel depth information

  2. gl.COLOR_BUFFER_BIT — indicates the buffers for pixel color information

Set Triangle Coordinates

main.js

// set position coordinates for shapeconst triangleCoords = [0.0, -1.0, 0.0, 1.0, 1.0, 1.0];

Once the the background is set we can set the coordinates needed to create the triangle. The coordinates are stored in an array as (x, y) coordinates.

The below array holds 3-point coordinates. These points connect to form the triangle.

0.0, -1.0
0.0 , 1.0
1.0, 1.0

Adding Vertex and Fragment Shaders

main.js

const vertexShader = `#version 300 esprecision mediump float;in vec2 position;void main() { gl_Position = vec4(position.x, position.y, 0.0, 1.0); //x,y,z,w}`;const fragmentShader = `#version 300 esprecision mediump float;out vec4 color;void main () { color = vec4(0.0,0.0,1.0,1.0); //r,g,b,a}`;

After creating a variable for the triangle coordinates, we can set up the shaders.

A shader is a program written in OpenGL ES Shading Language. The program takes position and color information about each vertice point. This information is what’s needed to render geometry.

There are two types of shaders functions that are needed to draw webgl content, the vertex shader and fragment shader

*vertex shader *— The vertex shader function uses position information to render each pixel. Per every render, the vertex shader function runs on each vertex. The vertex shader then transforms each vertex from it’s original coordinates to WebGL coordinates. Each transformed vertex is then saved to the gl_Position variable in the vertex shader program.

*fragment shader *— The fragment shader function is called once for every pixel on a shape to be drawn. This occurs after the vertex shader runs. The fragment shader determines how the color of each pixel and “texel (pixel within a texture)” should be applied. The fragment shader color is saved in the gl_FragColor variable in the fragment shader program.

In the code above we are creating both a vertexShader and fragmentShader constant and storing the shader code in them. The Book of Shaders is a great resource for learning how to write GLSL code.

Processing the Vertex and Fragment Shaders

main.js

// process vertex shaderconst shader = gl.createShader(gl.VERTEX_SHADER);gl.shaderSource(shader, vertexShader);gl.compileShader(shader);if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {console.log(gl.getShaderInfoLog(vertexShader));}// process fragment shaderconst shader = gl.createShader(gl.FRAGMENT_SHADER);gl.shaderSource(shader, fragmentShader);gl.compileShader(shader);if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {console.log(gl.getShaderInfoLog(fragmentShader));}

Now that we wrote the shader code (GLSL), we need to create the shader. The shader code still needs to compile. To do this we call the following functions:

createShader() — This creates the shader within the WebGL context

shaderSource() — This takes the GLSL source code that we wrote and sets it into the webGLShader object that was created with createShader.

compileShader() — This compiles the GLSL shader program into data for the WebGLProgram.

The code above processes the vertex and fragment shaders to eventually compile into the WebGLProgram.

Note: An if conditional is added to check if both shaders have compiled properly. If not, an info log will appear. Debugging can be tricky in WebGL so adding these checks is a must.

Creating a WebGL Program

main.js

const program = gl.createProgram();// Attach pre-existing shadersgl.attachShader(program, vertexShader);gl.attachShader(program, fragmentShader);gl.linkProgram(program);if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {  const info = gl.getProgramInfoLog(program);  throw \\\"Could not compile WebGL program. \\\\n\\\\n${info}\\\";}

Let’s review the code above:

After compiling the vertexShader and fragmentShader, we can now create a WebGLProgram. A WebGLProgram is an object that holds the compiled vertexShader and fragmentShader.

createProgram() — Creates and initializes the WebGLProgram

attachShader() — This method attaches the shader to the webGLProgram

linkProgram() — This method links the program object with the shader objects

Lastly, we need to make a conditional check to see if the program is running properly. We do this with the gl.getProgramParameter.

Create and Bind the Buffers

Now that the WebGL Program is created and the shader programs are linked to it, it’s time to create the buffers. What are buffers?

To simplify it as much as possible, buffers are objects that store vertices and colors. Buffers don’t have any methods or properties that are accessible. Instead, the WebGL context has it’s own methods for handling buffers.

Buffer — “a temporary storage location for data that’s being moved from one place to another”
-wikipedia

We need to create a buffer so that we can store our triangle colors and vertices.

To do this we add the following:

main.js

const buffer = gl.createBuffer();gl.bindBuffer(gl.ARRAY_BUFFER, buffer);gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleCoords), gl.STATIC_DRAW);gl.bindBuffer(gl.ARRAY_BUFFER, null);

In the code above we’re creating a buffer (or temporary storage object) using the createBuffer() method. Then we store it in a constant. Now that we have a buffer object we need to bind it to a target. There are several different target but since we’re storing coordinates in an array we will be using the gl.ARRAY_BUFFER.

To bind the buffer to a target, we use gl.bindBuffer() and pass in the gl.ARRAY_BUFFER (target) and the buffer itself as parameters.

The next step would be to use gl.bufferData() which creates the data store. gl.bufferData() takes the following parameters:

targetgl.ARRAY_BUFFER
datanew Float32Array(triangleCoords)
usage (draw type) — gl.STATIC_DRAW

Lastly, we unbind the buffer from the target to reduce side effects.

Use Program

main.js

gl.useProgram(program);

Once the buffer creation and binding is complete, we can now call the method that sets the WebGLProgram to the rendering state.

Link GPU and CPU

As we get closer to the final step, we need to talk about attributes.

In WebGL, vertex data is stored in a special variable called attributes. attributes are only available to the javascript program and the vertex shader. To access the attributes variable we need to first get the location of the attributes from the GPU. The GPU uses an index to reference the location of the attributes.

main.js

// get index that holds the triangle position informationconst position = gl.getAttribLocation(obj.program, obj.gpuVariable);gl.enableVertexAttribArray(position);gl.bindBuffer(gl.ARRAY_BUFFER, buffer);gl.vertexAttribPointer(position, 2, gl.FLOAT, obj.normalize, obj.stride, obj.offset);

Let’s review the code above:

Since we’re rendering a triangle we need the index of the position variable that we set in the vertex shader. We do this using the gl.getAttribLocation() method. By passing in the WebGL program and the position variable name (from the vertex shader) we can get the position attribute’s index.

Next, we need to use the gl.enableVertexAttribArray() method and pass in the position index that we just obtained. This will enable the attributes` storage so we can access it.

We will then rebind our buffer using gl.bindBuffer() and pass in the gl.ARRAY_BUFFER and buffer parameters (the same as when we created the buffers before). Remember in the “Create and Bind the Buffers” section we set the buffer to null to avoid side effects.

When we binded the buffer to the gl.ARRAY_BUFFER we are now able to store our attributes in a specific order. gl.vertexAttribPointer() allows us to do that.

By using gl.vertexAttribPointer() we can pass in the attributes we’d like to store in a specific order. The parameters are ordered first to last.

The gl.vertexAttribPointer is a more complex concept that may take some additional research. You can think of it as a method that allows you to store your attributes in the vertex buffer object in a specific order of your choosing.

Sometimes 3D geometry already has a certain format in which the geometry information is set. vertexAttribPointer comes in handy if you need to make modifications to how that geometry information is organized.

Draw Triangle

main.js

gl.drawArrays(gl.TRIANGLES, 0, 3);

Lastly, we can use the gl.drawArrays method to render the triangle. There are other draw methods, but since our vertices are in an array, this method should be used.

gl.drawArrays() takes three parameters:

mode — which specifies the type of primitive to render. (in this case were rendering a triangle)

first — specifies the starting index in the array of vector points (our triangle coordinates). In this case it’s 0.

count — specifies the number of indices to be rendered. ( since it\\'s a triangle we’re rendering 3 indices)

Note: For more complex geometry with a lot of vertices you can use **triangleCoords.length / 2 **to ****get how many indices your geometry has.

Finally, your triangle should be rendered to the screen! Let’s review the steps.

\\\"Breaking

The API is a complex one so there’s still a lot to learn but understanding this setup has given me a better foundation.

// Set up the HTML canvasconst canvas = document.getElementById(\\\"canvas\\\");canvas.width = window.innerWidth;canvas.height = window.innerHeight;// get the webgl contextconst gl = canvas.getContext(\\\"webgl2\\\");// Clear the canvas color and set a new onegl.clearColor(0.1, 0.2, 0.3, 1.0);gl.clear(gl.DEPTH_BUFFER_BIT | gl.COLOR_BUFFER_BIT);// Create an array of triangle (x,y )coordinatesconst triangleCoords = [0.0, -1.0, 0.0, 1.0, 1.0, 1.0];// Add vertex and fragment shader codeconst vertexShader = `#version 300 esprecision mediump float;in vec2 position;void main() {gl_Position = vec4(position.x, position.y, 0.0, 1.0); //x,y,z,w}`;const fragmentShader = `#version 300 esprecision mediump float;out vec4 color;void main () {color = vec4(0.0,0.0,1.0,1.0); //r,g,b,a}`;// Process and compile the shader codeconst vShader = gl.createShader(gl.VERTEX_SHADER);gl.shaderSource(vShader, vertexShader);gl.compileShader(vShader);if (!gl.getShaderParameter(vShader, gl.COMPILE_STATUS)) { console.log(gl.getShaderInfoLog(vertexShader));}const fShader = gl.createShader(gl.FRAGMENT_SHADER);gl.shaderSource(fShader, fragmentShader);gl.compileShader(fShader);if (!gl.getShaderParameter(fShader, gl.COMPILE_STATUS)) {console.log(gl.getShaderInfoLog(fragmentShader));}// Create a webGL programconst program = gl.createProgram();// Link the GPU information to the CPUgl.attachShader(program, vShader);gl.attachShader(program, fShader);gl.linkProgram(program);if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {const info = gl.getProgramInfoLog(program);throw \\\"Could not compile WebGL program. \\\\n\\\\n${info}\\\";}// Create and bind buffers to the webGL programconst buffer = gl.createBuffer();gl.bindBuffer(gl.ARRAY_BUFFER, buffer);gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleCoords), gl.STATIC_DRAW);gl.bindBuffer(gl.ARRAY_BUFFER, null);// Use the programgl.useProgram(program);// Link the GPU information to the CPUconst position = gl.getAttribLocation(program, \\\"position\\\");gl.enableVertexAttribArray(position);gl.bindBuffer(gl.ARRAY_BUFFER, buffer);gl.vertexAttribPointer(position, 2, gl.FLOAT, gl.FALSE, 0, 0);// render trianglegl.drawArrays(gl.TRIANGLES, 0, 3);

Here are some invaluable references to help understand this material better.

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://www.udemy.com/course/webgl-internals/
https://webglfundamentals.org/

","image":"http://www.luping.net/uploads/20241022/172957574967173b45a9360.png","datePublished":"2024-11-03T02:11:06+08:00","dateModified":"2024-11-03T02:11:06+08:00","author":{"@type":"Person","name":"luping.net","url":"https://www.luping.net/articlelist/0_1.html"}}
”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 分解 WebGL 三角形设置

分解 WebGL 三角形设置

发布于2024-11-03
浏览:453

WebGL has a track record of being one of Javascript’s more complex API’s. As a web developer intrigued by all that’s interactive, I decided to dive into WebGL’s MDN documentation. I’ve worked with Three.js which abstracts a lot of the hardships of WebGL but I couldn’t help but open up the hood!

The goal of this deep dive was to see if I could make sense of the documentation enough to explain it in simpler terms. Disclaimer — I’ve worked with Three.js and have a bit of knowledge in 3D graphic terminology and patterns. I’ll be sure to explain these concepts if they apply in any way.

To start, we’re going to focus on the creation of a triangle. The reason for this is to establish an understanding of the parts needed to set up webGL.

To get a feel of what will be covered, here are the steps we’ll be going through.

  • Set up the HTML canvas

  • Get the WebGL context

  • Clear the canvas color and set a new one

  • Create an array of triangle (x,y )coordinates

  • Add vertex and fragment shader code

  • Process and compile the shader code

  • Create a webGL program

  • Create and bind buffers to the webGL program

  • Use the program

  • Link the GPU information to the CPU

  • Draw out the triangle

Setup HTML Canvas

  1. Create a folder called “RenderTriangle”
  2. In that folder create an index.html and main.js file

Within the index.html file add the following code:

index.js



Document
  1. is the entry point for rendering the WebGL context

  2. We set up the basic HTML code and link the main.js file.

  3. In the main.js file we will access the canvas id to render webGL content.

Prepare the HTML Canvas

Within the main.js file add the following code which prepares the HTML canvas:

main.js

// get canvas
const canvas = document.getElementById("canvas");

// set width and height of canvas
canvas.width = window.innerWidth;

canvas.height = window.innerHeight;

// get the webgl context
const gl = canvas.getContext("webgl2");
  1. Get the HTML canvas by id and store it in a variable called “canvas” (you can use any name).

  2. Set the canvas.width and canvas.height properties of the canvas by accessing the window.innerWidth and window.innerHeight. This sets the rendered display to the size of the browser window.

  3. Get the WebGL context using canvas.getContext(“webgl2”) and store it in a variable called “gl”.

Clear Color

main.js

gl.clearColor(0.1, 0.2, 0.3, 1.0);
gl.clear(gl.DEPTH_BUFFER_BIT | gl.COLOR_BUFFER_BIT);

Before writing any webGL program you need to set the background color of your canvas. WebGL has two methods for making this happen.

clearColor() — is a method that sets a specific background color. It’s called “clearColor” because when you render WebGL into the HTML canvas, CSS sets the background to the color black. When you call clearColor(), it clears the default color and sets whatever color you want. We can see this below.

Note: The clearColor() has 4 parameters (r, g, b, a)

clear() — after clearColor() is called and an explicit background color is set,
**clear()** must be called to “clear” or reset the buffers to the preset values (the buffers are temporary storage for color and depth information).

The clear() method is one of the drawing methods which means it’s the method that actually renders the color. Without calling the clear() method the canvas won’t show the clearColor. The clear() parameter options are,
are gl.COLOR_BUFFER_BIT, gl.DEPTH_BUFFER_BIT, or gl.STENCIL_BUFFER_BIT.

In the code below you can add multiple parameters to reset in different scenarios.

  1. gl.DEPTH_BUFFER_BIT — indicates buffers for pixel depth information

  2. gl.COLOR_BUFFER_BIT — indicates the buffers for pixel color information

Set Triangle Coordinates

main.js

// set position coordinates for shape
const triangleCoords = [0.0, -1.0, 0.0, 1.0, 1.0, 1.0];

Once the the background is set we can set the coordinates needed to create the triangle. The coordinates are stored in an array as (x, y) coordinates.

The below array holds 3-point coordinates. These points connect to form the triangle.

0.0, -1.0
0.0 , 1.0
1.0, 1.0

Adding Vertex and Fragment Shaders

main.js

const vertexShader = `#version 300 es
precision mediump float;

in vec2 position;

void main() {
 gl_Position = vec4(position.x, position.y, 0.0, 1.0); //x,y,z,w
}
`;


const fragmentShader = `#version 300 es
precision mediump float;

out vec4 color;

void main () {
 color = vec4(0.0,0.0,1.0,1.0); //r,g,b,a
}
`;

After creating a variable for the triangle coordinates, we can set up the shaders.

A shader is a program written in OpenGL ES Shading Language. The program takes position and color information about each vertice point. This information is what’s needed to render geometry.

There are two types of shaders functions that are needed to draw webgl content, the vertex shader and fragment shader

*vertex shader *— The vertex shader function uses position information to render each pixel. Per every render, the vertex shader function runs on each vertex. The vertex shader then transforms each vertex from it’s original coordinates to WebGL coordinates. Each transformed vertex is then saved to the gl_Position variable in the vertex shader program.

*fragment shader *— The fragment shader function is called once for every pixel on a shape to be drawn. This occurs after the vertex shader runs. The fragment shader determines how the color of each pixel and “texel (pixel within a texture)” should be applied. The fragment shader color is saved in the gl_FragColor variable in the fragment shader program.

In the code above we are creating both a vertexShader and fragmentShader constant and storing the shader code in them. The Book of Shaders is a great resource for learning how to write GLSL code.

Processing the Vertex and Fragment Shaders

main.js

// process vertex shader
const shader = gl.createShader(gl.VERTEX_SHADER);

gl.shaderSource(shader, vertexShader);

gl.compileShader(shader);

if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
console.log(gl.getShaderInfoLog(vertexShader));
}


// process fragment shader
const shader = gl.createShader(gl.FRAGMENT_SHADER);

gl.shaderSource(shader, fragmentShader);

gl.compileShader(shader);

if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
console.log(gl.getShaderInfoLog(fragmentShader));
}

Now that we wrote the shader code (GLSL), we need to create the shader. The shader code still needs to compile. To do this we call the following functions:

createShader() — This creates the shader within the WebGL context

shaderSource() — This takes the GLSL source code that we wrote and sets it into the webGLShader object that was created with createShader.

compileShader() — This compiles the GLSL shader program into data for the WebGLProgram.

The code above processes the vertex and fragment shaders to eventually compile into the WebGLProgram.

Note: An if conditional is added to check if both shaders have compiled properly. If not, an info log will appear. Debugging can be tricky in WebGL so adding these checks is a must.

Creating a WebGL Program

main.js

const program = gl.createProgram();

// Attach pre-existing shaders
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);

gl.linkProgram(program);

if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
  const info = gl.getProgramInfoLog(program);
  throw "Could not compile WebGL program. \n\n${info}";
}

Let’s review the code above:

After compiling the vertexShader and fragmentShader, we can now create a WebGLProgram. A WebGLProgram is an object that holds the compiled vertexShader and fragmentShader.

createProgram() — Creates and initializes the WebGLProgram

attachShader() — This method attaches the shader to the webGLProgram

linkProgram() — This method links the program object with the shader objects

Lastly, we need to make a conditional check to see if the program is running properly. We do this with the gl.getProgramParameter.

Create and Bind the Buffers

Now that the WebGL Program is created and the shader programs are linked to it, it’s time to create the buffers. What are buffers?

To simplify it as much as possible, buffers are objects that store vertices and colors. Buffers don’t have any methods or properties that are accessible. Instead, the WebGL context has it’s own methods for handling buffers.

Buffer — “a temporary storage location for data that’s being moved from one place to another”
-wikipedia

We need to create a buffer so that we can store our triangle colors and vertices.

To do this we add the following:

main.js

const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleCoords), gl.STATIC_DRAW);

gl.bindBuffer(gl.ARRAY_BUFFER, null);

In the code above we’re creating a buffer (or temporary storage object) using the createBuffer() method. Then we store it in a constant. Now that we have a buffer object we need to bind it to a target. There are several different target but since we’re storing coordinates in an array we will be using the gl.ARRAY_BUFFER.

To bind the buffer to a target, we use gl.bindBuffer() and pass in the gl.ARRAY_BUFFER (target) and the buffer itself as parameters.

The next step would be to use gl.bufferData() which creates the data store. gl.bufferData() takes the following parameters:

targetgl.ARRAY_BUFFER
datanew Float32Array(triangleCoords)
usage (draw type) — gl.STATIC_DRAW

Lastly, we unbind the buffer from the target to reduce side effects.

Use Program

main.js

gl.useProgram(program);

Once the buffer creation and binding is complete, we can now call the method that sets the WebGLProgram to the rendering state.

Link GPU and CPU

As we get closer to the final step, we need to talk about attributes.

In WebGL, vertex data is stored in a special variable called attributes. attributes are only available to the javascript program and the vertex shader. To access the attributes variable we need to first get the location of the attributes from the GPU. The GPU uses an index to reference the location of the attributes.

main.js

// get index that holds the triangle position information
const position = gl.getAttribLocation(obj.program, obj.gpuVariable);

gl.enableVertexAttribArray(position);

gl.bindBuffer(gl.ARRAY_BUFFER, buffer);

gl.vertexAttribPointer(position, 2, gl.FLOAT, obj.normalize, obj.stride, obj.offset);

Let’s review the code above:

Since we’re rendering a triangle we need the index of the position variable that we set in the vertex shader. We do this using the gl.getAttribLocation() method. By passing in the WebGL program and the position variable name (from the vertex shader) we can get the position attribute’s index.

Next, we need to use the gl.enableVertexAttribArray() method and pass in the position index that we just obtained. This will enable the attributes` storage so we can access it.

We will then rebind our buffer using gl.bindBuffer() and pass in the gl.ARRAY_BUFFER and buffer parameters (the same as when we created the buffers before). Remember in the “Create and Bind the Buffers” section we set the buffer to null to avoid side effects.

When we binded the buffer to the gl.ARRAY_BUFFER we are now able to store our attributes in a specific order. gl.vertexAttribPointer() allows us to do that.

By using gl.vertexAttribPointer() we can pass in the attributes we’d like to store in a specific order. The parameters are ordered first to last.

The gl.vertexAttribPointer is a more complex concept that may take some additional research. You can think of it as a method that allows you to store your attributes in the vertex buffer object in a specific order of your choosing.

Sometimes 3D geometry already has a certain format in which the geometry information is set. vertexAttribPointer comes in handy if you need to make modifications to how that geometry information is organized.

Draw Triangle

main.js

gl.drawArrays(gl.TRIANGLES, 0, 3);

Lastly, we can use the gl.drawArrays method to render the triangle. There are other draw methods, but since our vertices are in an array, this method should be used.

gl.drawArrays() takes three parameters:

mode — which specifies the type of primitive to render. (in this case were rendering a triangle)

first — specifies the starting index in the array of vector points (our triangle coordinates). In this case it’s 0.

count — specifies the number of indices to be rendered. ( since it's a triangle we’re rendering 3 indices)

Note: For more complex geometry with a lot of vertices you can use **triangleCoords.length / 2 **to ****get how many indices your geometry has.

Finally, your triangle should be rendered to the screen! Let’s review the steps.

Breaking Down the WebGL Triangle Setup

  • Set up the HTML canvas

  • Get the WebGL context

  • Clear the canvas color and set a new one

  • Create an array of triangle (x,y )coordinates

  • Add vertex and fragment shader code

  • Process and compile the shader code

  • Create a webGL program

  • Create and bind buffers to the webGL program

  • Use the program

  • Link the GPU information to the CPU

  • Draw out the triangle

The API is a complex one so there’s still a lot to learn but understanding this setup has given me a better foundation.

// Set up the HTML canvas
const canvas = document.getElementById("canvas");

canvas.width = window.innerWidth;
canvas.height = window.innerHeight;

// get the webgl context
const gl = canvas.getContext("webgl2");

// Clear the canvas color and set a new one
gl.clearColor(0.1, 0.2, 0.3, 1.0);
gl.clear(gl.DEPTH_BUFFER_BIT | gl.COLOR_BUFFER_BIT);


// Create an array of triangle (x,y )coordinates
const triangleCoords = [0.0, -1.0, 0.0, 1.0, 1.0, 1.0];

// Add vertex and fragment shader code
const vertexShader = `#version 300 es
precision mediump float;
in vec2 position;

void main() {
gl_Position = vec4(position.x, position.y, 0.0, 1.0); //x,y,z,w
}
`;

const fragmentShader = `#version 300 es
precision mediump float;
out vec4 color;

void main () {
color = vec4(0.0,0.0,1.0,1.0); //r,g,b,a
}
`;


// Process and compile the shader code
const vShader = gl.createShader(gl.VERTEX_SHADER);

gl.shaderSource(vShader, vertexShader);
gl.compileShader(vShader);

if (!gl.getShaderParameter(vShader, gl.COMPILE_STATUS)) {
 console.log(gl.getShaderInfoLog(vertexShader));
}


const fShader = gl.createShader(gl.FRAGMENT_SHADER);

gl.shaderSource(fShader, fragmentShader);
gl.compileShader(fShader);

if (!gl.getShaderParameter(fShader, gl.COMPILE_STATUS)) {
console.log(gl.getShaderInfoLog(fragmentShader));
}

// Create a webGL program
const program = gl.createProgram();


// Link the GPU information to the CPU
gl.attachShader(program, vShader);
gl.attachShader(program, fShader);

gl.linkProgram(program);


if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
const info = gl.getProgramInfoLog(program);
throw "Could not compile WebGL program. \n\n${info}";
}


// Create and bind buffers to the webGL program
const buffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(triangleCoords), gl.STATIC_DRAW);
gl.bindBuffer(gl.ARRAY_BUFFER, null);


// Use the program
gl.useProgram(program);



// Link the GPU information to the CPU
const position = gl.getAttribLocation(program, "position");

gl.enableVertexAttribArray(position);
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.vertexAttribPointer(position, 2, gl.FLOAT, gl.FALSE, 0, 0);


// render triangle
gl.drawArrays(gl.TRIANGLES, 0, 3);

Here are some invaluable references to help understand this material better.

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://www.udemy.com/course/webgl-internals/
https://webglfundamentals.org/

版本声明 本文转载于:https://dev.to/digitalanthro/breaking-down-the-webgl-triangle-setup-3c1m?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何在 React 中使用上下文
    如何在 React 中使用上下文
    欢迎回来,朋友们!
 今天我们将回顾名为 useContext 的 React Hook 的基础知识。 useContext 是一个强大的工具,它比 useState 更进一步,创建了一个类似全局的 State,可以将信息传递给子组件和孙组件,而无需直接传递 props。
 但我有点超前了。
如果你...
    编程 发布于2024-11-03
  • JavaScript 可以修改 PHP 会话变量吗?
    JavaScript 可以修改 PHP 会话变量吗?
    使用 JavaScript 设置 PHP 会话变量你可以使用 JavaScript 操作 PHP 会话变量吗?是的,您可以通过 AJAX 请求使用 JavaScript 设置 PHP 会话变量。操作方法如下:JavaScript 代码:jQuery('#div_session_write').loa...
    编程 发布于2024-11-03
  • Babel 6 修改后的默认导出行为有何影响和解决方法?
    Babel 6 修改后的默认导出行为有何影响和解决方法?
    Babel 6 修改后的默认导出行为:从方便到语义一致性的转变在一项突破性的改变中,Babel 6 修改了其方法导出默认值,引入从之前受 CommonJS 启发的行为到严格的 ES6 原则的转变。这一变化给开发者带来了机遇和挑战。此前,Babel 在默认导出声明中添加了一行“module.expor...
    编程 发布于2024-11-03
  • 如何识别数据框中具有部分字符串匹配的列?
    如何识别数据框中具有部分字符串匹配的列?
    识别名称中包含部分字符串的列在数据框中,您的任务是查找名称部分与特定字符串。与精确匹配不同,要求是识别包含字符串“spike”但可能在其之前或之后包含其他字符的列,例如“spike-2”、“hey spike”或“spiked-in”。 为了实现这一点,我们可以利用循环来迭代数据框的列名称。在此循环...
    编程 发布于2024-11-03
  • 用一个简单的属性来加速你的 CSS
    用一个简单的属性来加速你的 CSS
    您知道吗,您可以通过使用 all: unset; 来大幅减小 CSS 文件大小?这会重置元素上的所有属性,一次性清除所有继承的样式,使您的 CSS 更精简且更易于管理。 尝试一下,看看您的代码变得多么干净!如何管理继承的样式?
    编程 发布于2024-11-03
  • TypeScript 冒险与类型挑战 – Day Pick
    TypeScript 冒险与类型挑战 – Day Pick
    大家好。 我正在解决类型挑战,以更深入地研究 TypeScript。 今天,我想分享一下我对Pick的了解。 - 挑战 - interface Todo { title: string description: string completed: boolean } ty...
    编程 发布于2024-11-03
  • 如何扩展 JavaScript 中的内置错误对象?
    如何扩展 JavaScript 中的内置错误对象?
    扩展 JavaScript 中的 Error要扩展 JavaScript 中的内置 Error 对象,您可以使用 extends 关键字定义 Error 的子类。这允许您使用附加属性或方法创建自定义错误。在 ES6 中,您可以定义自定义错误类,如下所示:class MyError extends E...
    编程 发布于2024-11-03
  • 将测试集中在域上。 PHPUnit 示例
    将测试集中在域上。 PHPUnit 示例
    介绍 很多时候,开发人员尝试测试 100%(或几乎 100%)的代码。显然,这是每个团队应该为他们的项目达到的目标,但从我的角度来看,只应该完全测试整个代码的一部分:您的域。 域基本上是代码中定义项目实际功能的部分。例如,当您将实体持久保存到数据库时,您的域不负责将其持久保存在数据...
    编程 发布于2024-11-03
  • 如何使用 SQL 搜索列中的多个值?
    如何使用 SQL 搜索列中的多个值?
    使用 SQL 在列中搜索多个值构建搜索机制时,通常需要在同一列中搜索多个值场地。例如,假设您有一个搜索字符串,例如“Sony TV with FullHD support”,并且想要使用该字符串查询数据库,将其分解为单个单词。通过利用 IN 或 LIKE 运算符,您可以实现此功能。使用 IN 运算符...
    编程 发布于2024-11-03
  • 如何安全地从 Windows 注册表读取值:分步指南
    如何安全地从 Windows 注册表读取值:分步指南
    如何安全地从 Windows 注册表读取值检测注册表项是否存在确定注册表项是否存在:LONG lRes = RegOpenKeyExW(HKEY_LOCAL_MACHINE, L"SOFTWARE\\Perl", 0, KEY_READ, &hKey); if (lRes...
    编程 发布于2024-11-03
  • Staat源码中的useBoundStoreWithEqualityFn有解释。
    Staat源码中的useBoundStoreWithEqualityFn有解释。
    在这篇文章中,我们将了解Zustand源码中useBoundStoreWithEqualityFn函数是如何使用的。 上述代码摘自https://github.com/pmndrs/zustand/blob/main/src/traditional.ts#L80 useBoundStoreWithE...
    编程 发布于2024-11-03
  • 如何使用 Go 安全地连接 SQL 查询中的字符串?
    如何使用 Go 安全地连接 SQL 查询中的字符串?
    在 Go 中的 SQL 查询中连接字符串虽然文本 SQL 查询提供了一种简单的数据库查询方法,但了解将字符串文字与值连接的正确方法至关重要以避免语法错误和类型不匹配。提供的查询语法:query := `SELECT column_name FROM table_name WHERE ...
    编程 发布于2024-11-03
  • 如何在 Python 中以编程方式从 Windows 剪贴板检索文本?
    如何在 Python 中以编程方式从 Windows 剪贴板检索文本?
    以编程方式访问 Windows 剪贴板以在 Python 中进行文本检索Windows 剪贴板充当数据的临时存储,从而实现跨应用程序的无缝数据共享。本文探讨如何使用 Python 从 Windows 剪贴板检索文本数据。使用 win32clipboard 模块要从 Python 访问剪贴板,我们可以...
    编程 发布于2024-11-03
  • 使用 MySQL 存储过程时如何访问 PHP 中的 OUT 参数?
    使用 MySQL 存储过程时如何访问 PHP 中的 OUT 参数?
    使用 MySQL 存储过程访问 PHP 中的 OUT 参数使用 PHP 在 MySQL 中处理存储过程时,获取由于文档有限,“OUT”参数可能是一个挑战。然而,这个过程可以通过利用 mysqli PHP API 来实现。使用 mysqli考虑一个名为“myproc”的存储过程,带有一个 IN 参数(...
    编程 发布于2024-11-03
  • 在 Kotlin 中处理 null + null:会发生什么?
    在 Kotlin 中处理 null + null:会发生什么?
    在 Kotlin 中处理 null null:会发生什么? 在 Kotlin 中进行开发时,您一定会遇到涉及 null 值的场景。 Kotlin 的 null 安全方法众所周知,但是当您尝试添加 null null 时会发生什么?让我们来探讨一下这个看似简单却发人深省的情况! ...
    编程 发布于2024-11-03

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3