”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > Automated Trading with MetaTraderOrder Management and Market Data Collection

Automated Trading with MetaTraderOrder Management and Market Data Collection

发布于2024-11-08
浏览:860

Automated Trading with MetaTraderOrder Management and Market Data Collection

Your AsimovMT class provides a comprehensive interface for interacting with MetaTrader5 (MT5) using Python. However, there are several areas in your code that could benefit from improvements, corrections, and enhancements to ensure robustness and maintainability. Below is a detailed review with suggestions:


1. Initialization and Error Handling

Issue:

In the __init__ method, if mt5.initialize() fails, you print an error message and call mt5.shutdown(), but the program continues to execute. This can lead to unexpected behavior since subsequent operations depend on a successful initialization.

Recommendation:

After shutting down MT5, you should raise an exception or exit the program to prevent further execution.

Code Correction:

def __init__(self):
    if not mt5.initialize():
        print("initialize() failed, error code =", mt5.last_error())
        mt5.shutdown()
        raise ConnectionError("Failed to initialize MetaTrader5.")

    # Rest of your initialization code...

2. Typographical Errors

Issue:

There is a consistent typo in the attribute name self.positons. It should be self.positions.

Impact:

This typo will lead to AttributeError when accessing or modifying self.positions elsewhere in the class.

Code Correction:

# Corrected attribute name
self.positions = [i._asdict() for i in mt5.positions_get()]

Ensure that all instances of self.positons are corrected to self.positions throughout the class, including methods like check_positions_and_orders.


3. Use of self in the Main Block

Issue:

In the __main__ block, you use self to refer to the instance of AsimovMT. Typically, self is reserved for instance methods within a class.

Recommendation:

Use a different variable name (e.g., asimov_mt) to avoid confusion.

Code Correction:

if __name__ == "__main__":
    # Instance
    asimov_mt = AsimovMT()

    # Testing methods using asimov_mt instead of self
    start_date = datetime.today() - timedelta(days=1)
    df_data = asimov_mt.get_ohlc_range('PETR4', 'M1', start_date, datetime.today())
    df_data = asimov_mt.get_ohlc_pos('PETR4', 'M1', 0, 1000)

    # ... and so on

4. Market Order Price Adjustment

Issue:

In the send_market_order method, you adjust the price by adding or subtracting 5 * ticks for buy and sell orders, respectively. Market orders are typically executed at the current market price without such adjustments.

Recommendation:

Use the current ask price for buy orders and bid price for sell orders without manual adjustments. If you intend to place a limit order, ensure that it aligns with your strategy.

Code Correction:

def send_market_order(self, symbol, side, volume, deviation=20, magic=1000, comment='test'):
    mt5.symbol_select(symbol, True)
    symbol_info = mt5.symbol_info(symbol)

    if side.lower() == 'buy':
        price = symbol_info.ask
        order_type = mt5.ORDER_TYPE_BUY
    elif side.lower() == 'sell':
        price = symbol_info.bid
        order_type = mt5.ORDER_TYPE_SELL
    else:
        raise ValueError("Invalid side. Use 'buy' or 'sell'.")

    if symbol_info.visible:
        request = {
            "action": mt5.TRADE_ACTION_DEAL,
            "symbol": symbol,
            "volume": volume,
            "type": order_type,
            "price": price,
            "deviation": deviation,
            "magic": magic,
            "comment": comment,
            "type_time": mt5.ORDER_TIME_GTC,
            "type_filling": mt5.ORDER_FILLING_RETURN,
        }
        result = mt5.order_send(request)
        if result.retcode != mt5.TRADE_RETCODE_DONE:
            print(f"Order failed, retcode={result.retcode}")
        return result
    else:
        print(f"{symbol} not visible. Unable to send market order.")

5. Consistent Error Handling and Logging

Issue:

The current implementation uses print statements for error messages and notifications. This approach can be limiting for larger applications where logging levels and outputs need to be managed more granularly.

Recommendation:

Use Python’s built-in logging module to provide flexible and configurable logging.

Code Enhancement:

import logging

# Configure logging at the beginning of your script
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Replace print statements with logging
logging.info("MetaTrader5 loaded. Ready to start.")
logging.error(f"initialize() failed, error code = {mt5.last_error()}")

6. Validating Input Parameters

Issue:

Methods like send_limit_order and update_limit_order assume that input parameters are valid without performing checks.

Recommendation:

Add validation for input parameters to ensure they meet expected formats and constraints.

Code Example:

def send_limit_order(self, symbol, side, price, volume, magic=1000, comment=""):
    if side.lower() not in ['buy', 'sell']:
        raise ValueError("Invalid side. Use 'buy' or 'sell'.")
    if price <= 0:
        raise ValueError("Price must be positive.")
    if volume <= 0:
        raise ValueError("Volume must be positive.")

    # Rest of your method...

7. Enhancing the tf_dict

Issue:

Your tf_dict maps timeframe strings to their MT5 constants and their equivalent in seconds. The comment suggests uncertainty about how timeframes represent days.

Recommendation:

Consider calculating the number of bars or days based on the timeframe and your specific use case. Additionally, you might want to include more descriptive information or helper methods to handle timeframe conversions.

Code Enhancement:

from enum import Enum

class TimeFrame(Enum):
    M1 = mt5.TIMEFRAME_M1
    M2 = mt5.TIMEFRAME_M2
    # ... other timeframes

self.tf_dict = {
    'M1': (TimeFrame.M1.value, 60),
    'M2': (TimeFrame.M2.value, 120),
    # ... other mappings
}

This approach makes the timeframes more manageable and less error-prone.


8. Handling copy_rates_range and copy_rates_from_pos Responses

Issue:

In methods get_ohlc_range and get_ohlc_pos, if data_raw is empty, the method returns None implicitly. This can lead to unexpected NoneType errors downstream.

Recommendation:

Explicitly handle empty responses by returning an empty DataFrame or raising an exception, depending on your use case.

Code Correction:

def get_ohlc_range(self, symbol, timeframe, start_date, end_date=datetime.now()):
    tf = self.tf_dict.get(timeframe, [None])[0]
    if tf is None:
        raise ValueError(f"Invalid timeframe: {timeframe}")

    data_raw = mt5.copy_rates_range(symbol, tf, start_date, end_date) 
    if data_raw is None:
        logging.warning("No data retrieved for the given range.")
        return pd.DataFrame()

    df_data = self._format_ohlc(data_raw)
    return df_data if df_data is not None else pd.DataFrame()

9. Improving the update_limit_order Method

Issue:

The update_limit_order method updates the order's price and volume but doesn't validate whether the order exists or whether the modification was successful.

Recommendation:

Check if the order exists before attempting to modify it and handle the response from order_send appropriately.

Code Enhancement:

def update_limit_order(self, order_id, price, volume):
    order = mt5.order_get(ticket=order_id)
    if order is None:
        logging.error(f"Order ID {order_id} not found.")
        return None

    request = {
        "action": mt5.TRADE_ACTION_MODIFY,
        "order": order_id,
        "price": price,
        "volume": volume,
    }
    result = mt5.order_send(request)
    if result.retcode != mt5.TRADE_RETCODE_DONE:
        logging.error(f"Failed to update order {order_id}, retcode={result.retcode}")
    return result._asdict()

10. Ensuring Thread Safety

Issue:

If you plan to use AsimovMT in a multi-threaded environment, concurrent access to shared resources like self.positions and self.orders could lead to race conditions.

Recommendation:

Implement thread synchronization mechanisms (e.g., threading locks) to protect shared resources.

Code Example:

import threading

class AsimovMT:
    def __init__(self):
        # Existing initialization code...
        self.lock = threading.Lock()

    def check_positions_and_orders(self):
        with self.lock:
            new_positions = [i._asdict() for i in mt5.positions_get()]
            new_orders = [i._asdict() for i in mt5.orders_get()]

            check = (self.positions != new_positions) or (self.orders != new_orders)
            self.positions = new_positions
            self.orders = new_orders
            return check

11. Finalizing MT5 Connection

Issue:

There’s no mechanism to properly shut down the MT5 connection when the program exits, which can lead to resource leaks.

Recommendation:

Implement a destructor method (__del__) or use context managers to ensure mt5.shutdown() is called appropriately.

Code Example Using Destructor:

def __del__(self):
    mt5.shutdown()
    logging.info("MetaTrader5 connection closed.")

Or Using Context Manager:

from contextlib import contextmanager

@contextmanager
def asimov_mt_context():
    asimov_mt = AsimovMT()
    try:
        yield asimov_mt
    finally:
        del asimov_mt

# Usage
if __name__ == "__main__":
    with asimov_mt_context() as asimov_mt:
        # Your testing code here

12. Enhancing Documentation and Readability

Issue:

The current code lacks docstrings and comments in English, which can hinder understanding and maintenance, especially for collaborators who may not speak Portuguese.

Recommendation:

Add docstrings to classes and methods, and ensure comments are in a consistent language (preferably English for broader accessibility).

Code Example:

class AsimovMT:
    """
    AsimovMT is a class that interfaces with MetaTrader5 to manage trading operations,
    retrieve market data, and monitor positions and orders.
    """

    def __init__(self):
        """
        Initializes the MetaTrader5 connection and retrieves current positions, orders,
        and historical data.
        """
        # Initialization code...

13. Sample Revised Main Block

Here’s how your __main__ block could look after applying the recommendations:

if __name__ == "__main__":
    try:
        asimov_mt = AsimovMT()

        # Testing market data methods
        start_date = datetime.today() - timedelta(days=1)
        df_range = asimov_mt.get_ohlc_range('PETR4', 'M1', start_date, datetime.today())
        print(df_range.head())

        df_pos = asimov_mt.get_ohlc_pos('PETR4', 'M1', 0, 1000)
        print(df_pos.head())

        # Testing balance methods
        positions_changed = asimov_mt.check_positions_and_orders()
        orders_changed = asimov_mt.check_positions_and_orders()
        print("Positions Changed:", positions_changed)
        print("Orders Changed:", orders_changed)

        h_positions_changed = asimov_mt.check_h_positions_and_orders(0)
        print("Historical Positions Changed:", h_positions_changed)
        print("Historical Deals:", asimov_mt.h_deals)
        print("Historical Orders:", asimov_mt.h_orders)

        # Testing order methods
        symbol = 'ITSA4'
        side = 'buy'
        volume = 100.0  # Should be float
        market_buy = asimov_mt.send_market_order(symbol, side, volume, comment='test')
        print("Market Buy Order:", market_buy)

        market_sell = asimov_mt.send_market_order(symbol, 'sell', volume, comment='test')
        print("Market Sell Order:", market_sell)

        limit_buy_price = 7.80
        limit_buy = asimov_mt.send_limit_order(symbol, 'buy', limit_buy_price, volume, comment='test')
        print("Limit Buy Order:", limit_buy)

        limit_sell_price = 8.00
        limit_sell = asimov_mt.send_limit_order(symbol, 'sell', limit_sell_price, volume, comment='test')
        print("Limit Sell Order:", limit_sell)

        # Update and cancel limit sell order
        if limit_sell:
            updated_order = asimov_mt.update_limit_order(limit_sell["order"], 8.01, volume=100.0)
            print("Updated Order:", updated_order)

            cancelled_order = asimov_mt.cancel_limit_order(limit_sell["order"])
            print("Cancelled Order:", cancelled_order)

    except Exception as e:
        logging.exception("An error occurred during execution.")

Conclusion

By addressing the issues and implementing the recommendations above, your AsimovMT class will become more robust, maintainable, and reliable. Proper error handling, input validation, and consistent naming conventions are crucial for developing scalable and professional-grade trading applications. Additionally, enhancing documentation and logging will aid in debugging and future development efforts.

Feel free to reach out if you have specific questions or need further assistance with particular aspects of your code!

版本声明 本文转载于:https://dev.to/vital7388/automated-trading-with-metatrader5-order-management-and-market-data-collection-4pb8?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • ## JPQL 中的构造函数表达式:使用还是不使用?
    ## JPQL 中的构造函数表达式:使用还是不使用?
    JPQL 中的构造函数表达式:有益还是有问题的实践?JPQL 提供了使用构造函数表达式在 select 语句中创建新对象的能力。虽然此功能提供了某些优势,但它引发了关于其在软件开发实践中是否适用的问题。构造函数表达式的优点构造函数表达式允许开发人员从实体中提取特定数据并进行组装,从而简化了数据检索将...
    编程 发布于2024-11-08
  • 原型
    原型
    创意设计模式之一。 用于创建给定对象的重复/浅副本。 当直接创建对象成本高昂时,此模式很有用,例如:如果在查询大型数据库后创建对象,则一次又一次地创建该对象在性能方面并不经济。 因此,一旦创建了对象,我们就缓存该对象,并且在将来需要相同的对象时,我们从缓存中获取它,而不是从数据库中再次创建它,并在需...
    编程 发布于2024-11-08
  • Python 变量:命名规则和类型推断解释
    Python 变量:命名规则和类型推断解释
    Python 是一种广泛使用的编程语言,以其简单性和可读性而闻名。了解变量的工作原理是编写高效 Python 代码的基础。在本文中,我们将介绍Python变量命名规则和类型推断,确保您可以编写干净、无错误的代码。 Python变量命名规则 在Python中命名变量时,必须遵循一定的...
    编程 发布于2024-11-08
  • 如何同时高效地将多个列添加到 Pandas DataFrame 中?
    如何同时高效地将多个列添加到 Pandas DataFrame 中?
    同时向 Pandas DataFrame 添加多个列在 Pandas 数据操作中,有效地向 DataFrame 添加多个新列可能是一项需要优雅解决方案的任务。虽然使用带有等号的列列表语法的直观方法可能看起来很简单,但它可能会导致意外的结果。挑战如提供的示例中所示,以下语法无法按预期创建新列:df[[...
    编程 发布于2024-11-08
  • 从开发人员到高级架构师:技术专长和奉献精神的成功故事
    从开发人员到高级架构师:技术专长和奉献精神的成功故事
    一个开发人员晋升为高级架构师的真实故事 一位熟练的Java EE开发人员,只有4年的经验,加入了一家跨国IT公司,并晋升为高级架构师。凭借多样化的技能和 Oracle 认证的 Java EE 企业架构师,该开发人员已经证明了他在架构领域的勇气。 加入公司后,开发人员被分配到一个项目,该公司在为汽车制...
    编程 发布于2024-11-08
  • 如何在 PHP 8.1 中有条件地将元素添加到关联数组?
    如何在 PHP 8.1 中有条件地将元素添加到关联数组?
    条件数组元素添加在 PHP 中,有条件地将元素添加到关联数组的任务可能是一个挑战。例如,考虑以下数组:$arr = ['a' => 'abc'];我们如何有条件地添加 'b' => 'xyz'使用 array() 语句对此数组进行操作?在这种情况下,三元运算符不...
    编程 发布于2024-11-08
  • 从打字机到像素:CMYK、RGB 和构建色彩可视化工具的旅程
    从打字机到像素:CMYK、RGB 和构建色彩可视化工具的旅程
    当我还是个孩子的时候,我出版了一本关于漫画的粉丝杂志。那是在我拥有计算机之前很久——它是用打字机、纸和剪刀创建的! 粉丝杂志最初是黑白的,在我的学校复印的。随着时间的推移,随着它取得了更大的成功,我能够负担得起带有彩色封面的胶印! 然而,管理这些颜色非常具有挑战性。每个封面必须打印四次,每种颜色打印...
    编程 发布于2024-11-08
  • 如何将 Boehm 的垃圾收集器与 C++ 标准库集成?
    如何将 Boehm 的垃圾收集器与 C++ 标准库集成?
    集成 Boehm 垃圾收集器和 C 标准库要将 Boehm 保守垃圾收集器与 C 标准库集合无缝集成,有两种主要方法:重新定义运算符::new此方法涉及重新定义运算符::new以使用Boehm的GC。但是,它可能与现有 C 代码冲突,并且可能无法在不同编译器之间移植。显式分配器参数您可以使用而不是重...
    编程 发布于2024-11-08
  • 如何优化子集验证以获得顶级性能?
    如何优化子集验证以获得顶级性能?
    优化子集验证:确保每一位都很重要确定一个列表是否是另一个列表的子集的任务在编程中经常遇到。虽然交叉列表和比较相等性是一种简单的方法,但考虑性能至关重要,尤其是对于大型数据集。考虑到这种情况,需要考虑的一个关键因素是任何列表在多个测试中是否保持不变。由于您的场景中的其中一个列表是静态的,因此我们可以利...
    编程 发布于2024-11-08
  • 如何处理超出 MySQL BIGINT 限制的大整数?
    如何处理超出 MySQL BIGINT 限制的大整数?
    超出 MySQL BIGINT 限制的大整数处理MySQL 的 BIGINT 数据类型可能看起来是最广泛的整数表示形式,但是在处理时会出现限制超过 20 位的数字。超出 BIGINT 的选项边界当存储要求超出BIGINT的能力时,会出现两个选项:存储为VARCHAR: Twitter API建议将大...
    编程 发布于2024-11-08
  • 如何确保 Python Selenium 中加载多个元素?
    如何确保 Python Selenium 中加载多个元素?
    Python Selenium:确保​​多个元素加载通过 AJAX 处理动态加载的元素时,确认其外观可能具有挑战性。为了处理这种情况,我们将利用 Selenium 的 WebDriverWait 及其各种策略来确保多个元素的存在。所有元素的可见性:验证所有与特定选择器匹配的元素,我们可以使用visi...
    编程 发布于2024-11-08
  • 了解 JavaScript 中的标记模板文字
    了解 JavaScript 中的标记模板文字
    什么是标记模板文字? 带标签的模板文字涉及以函数为前缀的模板文字,称为标签。该函数可以处理和操作文字的内容。这是一个简单的例子: function tag(strings, ...values) { console.log(strings); console.log...
    编程 发布于2024-11-08
  • 二指针算法解释
    二指针算法解释
    我想解释一个简单有效的技巧,你可以在面试中处理数组、字符串、链表等时使用它。这也将提高你对这些数据的基础知识结构。 让我们从理论开始。该算法有两个常见用例: left/right 该算法的中心概念是有两个整数变量,它们将从字符串或数组的两侧移动。通常,人们称之为左和右。左边将从0索引移动到长度-1,...
    编程 发布于2024-11-08
  • 如何消除Python打印语句中的空格?
    如何消除Python打印语句中的空格?
    在 Python 打印语句中删除空格在 Python 中,打印多个项目通常会导致出现意外的空格。可以使用 sep 参数消除这些空格来解决此问题。例如,考虑这个:print("a", "b", "c")此输出将包含空格:a b c要消除它们:...
    编程 发布于2024-11-08
  • 具有样式和变体的 Flexbox 按钮
    具有样式和变体的 Flexbox 按钮
    该按钮使用 CSS Flexbox 进行样式化,包括主要、次要和第三级样式,所有这些样式都在嵌套 CSS 中构建,以提高清晰度和可维护性,其变化形式如下: 带文字 带有文字和图标(左/右/左&右) 只有图标 状态 全角 残疾人类型 HTML代码: <a href="#" class="sf-b...
    编程 发布于2024-11-08

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3