我正在使用 Python 通过 JDBC(或 ODBC)访问 IRIS 数据库。 我想将数据提取到 pandas 数据框中来操作数据并从中创建图表。我在使用 JDBC 时遇到了字符串处理问题。这篇文章旨在帮助其他人遇到同样的问题。 或者,如果有更简单的方法来解决这个问题,请在评论中告诉我!
我使用的是 OSX,所以我不确定我的问题有多独特。我正在使用 Jupyter Notebooks,尽管如果您使用任何其他 Python 程序或框架,代码通常是相同的。
当我从数据库中获取数据时,列描述和任何字符串数据都以数据类型java.lang.String返回。如果打印字符串数据,它将看起来像:“(p,a,i,n,i,n,t,h,e,r,e,a,r)”而不是预期的“painintherear”。
这可能是因为当使用 JDBC 获取时,数据类型 java.lang.String 的字符串作为可迭代对象或数组传入。 如果您使用的 Python-Java 桥接器(例如 JayDeBeApi、JDBC)未一步自动将 java.lang.String 转换为 Python str,则可能会发生这种情况。
相比之下,Python 的 str 字符串表示形式将整个字符串作为一个单元。 当 Python 检索普通 str(例如通过 ODBC)时,它不会拆分为单个字符。
要解决此问题,您必须确保 java.lang.String 正确转换为 Python 的 str 类型。 您可以在处理获取的数据时显式处理此转换,因此它不会被解释为可迭代或字符列表。
有很多方法可以进行字符串操作;这就是我所做的。
import pandas as pd import pyodbc import jaydebeapi import jpype def my_function(jdbc_used) # Some other code to create the connection goes here cursor.execute(query_string) if jdbc_used: # Fetch the results, convert java.lang.String in the data to Python str # (java.lang.String is returned "(p,a,i,n,i,n,t,h,e,r,e,a,r)" Convert to str type "painintherear" results = [] for row in cursor.fetchall(): converted_row = [str(item) if isinstance(item, jpype.java.lang.String) else item for item in row] results.append(converted_row) # Get the column names and ensure they are Python strings column_names = [str(col[0]) for col in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) # Check the results print(df.head().to_string()) else: # I was also testing ODBC # For very large result sets get results in chunks using cursor.fetchmany(). or fetchall() results = cursor.fetchall() # Get the column names column_names = [column[0] for column in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) # Do stuff with your dataframe
使用 ODBC 连接时,不会返回字符串或不返回字符串。
如果您要连接到包含 Unicode 数据(例如,不同语言的名称)的数据库,或者您的应用程序需要存储或检索非 ASCII 字符,则必须确保数据在数据库和您的 Python 应用程序。
此代码确保在向数据库发送和检索数据时使用 UTF-8 对字符串数据进行编码和解码。 在处理非 ASCII 字符或确保与 Unicode 数据的兼容性时,这一点尤其重要。
def create_connection(connection_string, password): connection = None try: # print(f"Connecting to {connection_string}") connection = pyodbc.connect(connection_string ";PWD=" password) # Ensure strings are read correctly connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8") connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8") connection.setencoding(encoding="utf8") except pyodbc.Error as e: print(f"The error '{e}' occurred") return connection
connection.setdecoding(pyodbc.SQL_CHAR,encoding="utf8")
告诉 pyodbc 在获取 SQL_CHAR 类型(通常是固定长度字符字段)时如何从数据库中解码字符数据。
connection.setdecoding(pyodbc.SQL_WCHAR, 编码=“utf8”)
设置 SQL_WCHAR、宽字符类型(即 Unicode 字符串,例如 SQL Server 中的 NVARCHAR 或 NCHAR)的解码。
connection.setencoding(encoding="utf8")
确保从 Python 发送到数据库的任何字符串或字符数据都将使用 UTF-8 进行编码,
意味着Python在与数据库通信时会将其内部str类型(即Unicode)转换为UTF-8字节。
安装JAVA - 使用dmg
https://www.oracle.com/middleeast/java/technologies/downloads/#jdk23-mac
更新 shell 以设置默认版本
$ /usr/libexec/java_home -V Matching Java Virtual Machines (2): 23 (arm64) "Oracle Corporation" - "Java SE 23" /Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home 1.8.421.09 (arm64) "Oracle Corporation" - "Java" /Library/Internet Plug-Ins/JavaAppletPlugin.plugin/Contents/Home /Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home $ echo $SHELL /opt/homebrew/bin/bash $ vi ~/.bash_profile
将 JAVA_HOME 添加到您的路径
export JAVA_HOME=$(/usr/libexec/java_home -v 23) export PATH=$JAVA_HOME/bin:$PATH
获取 JDBC 驱动程序
https://intersystems-community.github.io/iris-driver-distribution/
把jar文件放在某个地方...我把它放在$HOME
$ ls $HOME/*.jar /Users/myname/intersystems-jdbc-3.8.4.jar
它假设您已经设置了 ODBC(另一天的例子,狗吃了我的笔记...)。
注意:这是对我的真实代码的修改。注意变量名称。
import os import datetime from datetime import date, time, datetime, timedelta import pandas as pd import pyodbc import jaydebeapi import jpype def jdbc_create_connection(jdbc_url, jdbc_username, jdbc_password): # Path to JDBC driver jdbc_driver_path = '/Users/yourname/intersystems-jdbc-3.8.4.jar' # Ensure JAVA_HOME is set os.environ['JAVA_HOME']='/Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home' os.environ['CLASSPATH'] = jdbc_driver_path # Start the JVM (if not already running) if not jpype.isJVMStarted(): jpype.startJVM(jpype.getDefaultJVMPath(), classpath=[jdbc_driver_path]) # Connect to the database connection = None try: connection = jaydebeapi.connect("com.intersystems.jdbc.IRISDriver", jdbc_url, [jdbc_username, jdbc_password], jdbc_driver_path) print("Connection successful") except Exception as e: print(f"An error occurred: {e}") return connection def odbc_create_connection(connection_string): connection = None try: # print(f"Connecting to {connection_string}") connection = pyodbc.connect(connection_string) # Ensure strings are read correctly connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8") connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8") connection.setencoding(encoding="utf8") except pyodbc.Error as e: print(f"The error '{e}' occurred") return connection # Parameters odbc_driver = "InterSystems ODBC" odbc_host = "your_host" odbc_port = "51773" odbc_namespace = "your_namespace" odbc_username = "username" odbc_password = "password" jdbc_host = "your_host" jdbc_port = "51773" jdbc_namespace = "your_namespace" jdbc_username = "username" jdbc_password = "password" # Create connection and create charts jdbc_used = True if jdbc_used: print("Using JDBC") jdbc_url = f"jdbc:IRIS://{jdbc_host}:{jdbc_port}/{jdbc_namespace}?useUnicode=true&characterEncoding=UTF-8" connection = jdbc_create_connection(jdbc_url, jdbc_username, jdbc_password) else: print("Using ODBC") connection_string = f"Driver={odbc_driver};Host={odbc_host};Port={odbc_port};Database={odbc_namespace};UID={odbc_username};PWD={odbc_password}" connection = odbc_create_connection(connection_string) if connection is None: print("Unable to connect to IRIS") exit() cursor = connection.cursor() site = "SAMPLE" table_name = "your.TableNAME" desired_columns = [ "RunDate", "ActiveUsersCount", "EpisodeCountEmergency", "EpisodeCountInpatient", "EpisodeCountOutpatient", "EpisodeCountTotal", "AppointmentCount", "PrintCountTotal", "site", ] # Construct the column selection part of the query column_selection = ", ".join(desired_columns) query_string = f"SELECT {column_selection} FROM {table_name} WHERE Site = '{site}'" print(query_string) cursor.execute(query_string) if jdbc_used: # Fetch the results results = [] for row in cursor.fetchall(): converted_row = [str(item) if isinstance(item, jpype.java.lang.String) else item for item in row] results.append(converted_row) # Get the column names and ensure they are Python strings (java.lang.String is returned "(p,a,i,n,i,n,t,h,e,a,r,s,e)" column_names = [str(col[0]) for col in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) print(df.head().to_string()) else: # For very large result sets get results in chunks using cursor.fetchmany(). or fetchall() results = cursor.fetchall() # Get the column names column_names = [column[0] for column in cursor.description] # Create the dataframe df = pd.DataFrame.from_records(results, columns=column_names) print(df.head().to_string()) # # Build charts for a site # cf.build_7_day_rolling_average_chart(site, cursor, jdbc_used) cursor.close() connection.close() # Shutdown the JVM (if you started it) # jpype.shutdownJVM()
免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。
Copyright© 2022 湘ICP备2022001581号-3