」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > MongoDB 聚合管道

MongoDB 聚合管道

發佈於2024-08-07
瀏覽:767

MongoDB Aggregation Pipelines

Hi, aliens! I am Pavan. So in this repository, I will explain all the aggregation stages in depth with basic examples. I will also include links to resources for further learning.

So this repository contains JSON files for various MongoDB aggregation pipelines. These pipelines demonstrate how to use different aggregation stages and operations to process and analyze data.

Table of Contents

  • Introduction
  • CRUD Operations
  • Aggregation Stages
    • $match
    • $group
    • $project
    • $sort
    • $limit
    • $skip
    • $lookup
    • $unwind
    • $addFields
    • $replaceRoot
  • Aggregation Operations
    • $sum
    • $avg
    • $min
    • $max
    • $first
    • $last
  • Example Datasets
  • Resources for Further Learning

Introduction

Aggregation in MongoDB is a powerful way to process and analyze data stored in collections. It allows you to perform operations like filtering, grouping, sorting, and transforming data.

CRUD Operations

Create

db.orders.insertOne({
  "order_id": 26,
  "cust_id": 1006,
  "status": "A",
  "amount": 275,
  "items": ["apple", "banana"],
  "date": "2023-01-26"
});

Read

db.orders.find().pretty();

Update

db.orders.updateOne(
  { "order_id": 2 },
  {
    $set: { "status": "C", "amount": 500 },
    $currentDate: { "lastModified": true }
  }
);

Delete

db.orders.deleteOne({ "order_id": 1 });

Aggregation Stages

$match

Filters the documents to pass only the documents that match the specified condition(s) to the next pipeline stage.

db.orders.aggregate([
  { $match: { "status": "A" } }
]);

$group

Groups input documents by the specified _id expression and for each distinct grouping, outputs a document. The _id field contains the unique group by value.

db.orders.aggregate([
  {
    $group: {
      _id: "$cust_id",
      totalSpent: { $sum: "$amount" }
    }
  }
]);

$project

Passes along the documents with the requested fields to the next stage in the pipeline.

db.orders.aggregate([
  { $project: { "order_id": 1, "items": 1, "_id": 0 } }
]);

$sort

Sorts all input documents and returns them to the pipeline in sorted order.

db.orders.aggregate([
  { $sort: { "amount": -1 } }
]);

$limit

Limits the number of documents passed to the next stage in the pipeline.

db.orders.aggregate([
  { $limit: 5 }
]);

$skip

Skips the first n documents and passes the remaining documents to the next stage in the pipeline.

db.orders.aggregate([
  { $skip: 5 }
]);

$lookup

Performs a left outer join to another collection in the same database to filter in documents from the "joined" collection for processing.

db.orders.aggregate([
  {
    $lookup: {
      from: "orderDetails",
      localField: "order_id",
      foreignField: "order_id",
      as: "details"
    }
  }
]);

$unwind

Deconstructs an array field from the input documents to output a document for each element.

db.orders.aggregate([
  { $unwind: "$items" }
]);

$addFields

Adds new fields to documents.

db.orders.aggregate([
  { $addFields: { totalWithTax: { $multiply: ["$amount", 1.1] } } }
]);

$replaceRoot

Replaces the input document with the specified document.

db.orders.aggregate([
  { $replaceRoot: { newRoot: "$items" } }
]);

Aggregation Operations

$sum

Calculates and returns the sum of numeric values. $sum ignores non-numeric values.

db.orders.aggregate([
  {
    $group: {
      _id: "$cust_id",
      totalSpent: { $sum: "$amount" }
    }
  }
]);

$avg

Calculates and returns the average value of the numeric values.

db.orders.aggregate([
  {
    $group: {
      _id: "$cust_id",
      averageSpent: { $avg: "$amount" }
    }
  }
]);

$min

Returns the minimum value from the numeric values.

db.orders.aggregate([
  {
    $group: {
      _id: "$cust_id",
      minSpent: { $min: "$amount" }
    }
  }
]);

$max

Returns the maximum value from the numeric values.

db.orders.aggregate([
  {
    $group: {
      _id: "$cust_id",
      maxSpent: { $max: "$amount" }
    }
  }
]);

$first

Returns the first value from the documents for each group.

db.orders.aggregate([
  {
    $group: {
      _id: "$cust_id",
      firstOrder: { $first: "$amount" }
    }
  }
]);

$last

Returns the last value from the documents for each group.

db.orders.aggregate([
  {
    $group: {
      _id: "$cust_id",
      lastOrder: { $last: "$amount" }
    }
  }
]);

Example Datasets

Example documents used for performing CRUD and aggregation operations:

[
  { "order_id": 1, "cust_id": 1001, "status": "A", "amount": 250, "items": ["apple", "banana"], "date": "2023-01-01" },
  { "order_id": 2, "cust_id": 1002, "status": "B", "amount": 450, "items": ["orange", "grape"], "date": "2023-01-02" },
  { "order_id": 3, "cust_id": 1001, "status": "A", "amount": 300, "items": ["apple", "orange"], "date": "2023-01-03" },
  { "order_id": 4, "cust_id": 1003, "status": "A", "amount": 150, "items": ["banana", "grape"], "date": "2023-01-04" },
  { "order_id": 5, "cust_id": 1002, "status": "C", "amount": 500, "items": ["apple", "banana"], "date": "2023-01-05" },
  { "order_id": 6, "cust_id": 1004, "status": "A", "amount": 350, "items": ["orange", "banana"], "date": "2023-01-06" },
  { "order_id": 7, "cust_id": 1005, "status": "B", "amount": 200, "items": ["grape", "banana"], "date": "2023-01-07" },
  { "order_id": 8, "cust_id": 1003, "status": "A", "amount": 100, "items": ["apple", "orange"], "date": "2023-01-08" },
  { "order_id": 9, "cust_id": 1004, "status": "C", "amount": 400, "items": ["banana", "grape"], "date": "2023-01-09" },
  { "order_id": 10, "cust_id": 1001, "status": "A", "amount": 250, "items": ["apple", "grape"], "date": "2023-01-10" },
  { "order_id": 11, "cust_id": 1002, "status": "B", "amount": 350, "items": ["orange", "banana"], "date": "2023-01-11" },
  { "order_id": 12, "cust_id": 1003, "status": "A", "amount": 450, "items": ["apple", "orange"], "date": "2023-01-12" },
  { "order_id": 13, "cust_id": 1005, "status": "A", "amount": 150, "items": ["banana", "grape"], "date": "2023-01-13" },
  { "order_id": 14, "cust_id": 1004, "status": "C

", "amount": 500, "items": ["apple", "banana"], "date": "2023-01-14" },
  { "order_id": 15, "cust_id": 1002, "status": "A", "amount": 300, "items": ["orange", "grape"], "date": "2023-01-15" },
  { "order_id": 16, "cust_id": 1003, "status": "B", "amount": 200, "items": ["apple", "banana"], "date": "2023-01-16" },
  { "order_id": 17, "cust_id": 1001, "status": "A", "amount": 250, "items": ["orange", "grape"], "date": "2023-01-17" },
  { "order_id": 18, "cust_id": 1005, "status": "A", "amount": 350, "items": ["apple", "banana"], "date": "2023-01-18" },
  { "order_id": 19, "cust_id": 1004, "status": "C", "amount": 400, "items": ["orange", "grape"], "date": "2023-01-19" },
  { "order_id": 20, "cust_id": 1001, "status": "B", "amount": 150, "items": ["apple", "orange"], "date": "2023-01-20" },
  { "order_id": 21, "cust_id": 1002, "status": "A", "amount": 500, "items": ["banana", "grape"], "date": "2023-01-21" },
  { "order_id": 22, "cust_id": 1003, "status": "A", "amount": 450, "items": ["apple", "banana"], "date": "2023-01-22" },
  { "order_id": 23, "cust_id": 1004, "status": "B", "amount": 350, "items": ["orange", "banana"], "date": "2023-01-23" },
  { "order_id": 24, "cust_id": 1005, "status": "A", "amount": 200, "items": ["grape", "banana"], "date": "2023-01-24" },
  { "order_id": 25, "cust_id": 1001, "status": "A", "amount": 300, "items": ["apple", "orange"], "date": "2023-01-25" }
]

Resources for Further Learning

  • MongoDB Aggregation Documentation
  • MongoDB University Courses
  • MongoDB Aggregation Pipeline Builder

Feel free to clone this repository and experiment with the aggregation pipelines provided. If you have any questions or suggestions, please open an issue or submit a pull request.

$group

Groups orders by status and calculates the total amount and average amount for each status.

db.orders.aggregate([
  {
    $group: {
      _id: "$status",
      totalAmount: { $sum: "$amount" },
      averageAmount: { $avg: "$amount" }
    }
  }
]);

$project

Projects the order ID, customer ID, and a calculated field for the total amount with tax (assuming 10% tax).

db.orders.aggregate([
  {
    $project: {
      "order_id": 1,
      "cust_id": 1,
      "totalWithTax": { $multiply: ["$amount", 1.1] }
    }
  }
]);

$sort

Sorts orders first by status in ascending order and then by amount in descending order.

db.orders.aggregate([
  { $sort: { "status": 1, "amount": -1 } }
]);

$limit

Limits the result to the top 3 orders with the highest amount.

db.orders.aggregate([
  { $sort: { "amount": -1 } },
  { $limit: 3 }
]);

$skip

Skips the first 5 orders and returns the rest.

db.orders.aggregate([
  { $skip: 5 }
]);

$lookup

Joins the orders collection with an orderDetails collection to add order details.

db.orders.aggregate([
  {
    $lookup: {
      from: "orderDetails",
      localField: "order_id",
      foreignField: "order_id",
      as: "details"
    }
  }
]);

$unwind

Deconstructs the items array in each order to output a document for each item.

db.orders.aggregate([
  { $unwind: "$items" }
]);

$addFields

Adds a new field discountedAmount which is 90% of the original amount.

db.orders.aggregate([
  { $addFields: { discountedAmount: { $multiply: ["$amount", 0.9] } } }
]);

$replaceRoot

Replaces the root document with the items array.

db.orders.aggregate([
  { $replaceRoot: { newRoot: "$items" } }
]);

$sum

Calculates the total amount for all orders.

db.orders.aggregate([
  {
    $group: {
      _id: null,
      totalAmount: { $sum: "$amount" }
    }
  }
]);

$avg

Calculates the average amount spent per order.

db.orders.aggregate([
  {
    $group: {
      _id: null,
      averageAmount: { $avg: "$amount" }
    }
  }
]);

$min

Finds the minimum amount spent on an order.

db.orders.aggregate([
  {
    $group: {
      _id: null,
      minAmount: { $min: "$amount" }
    }
  }
]);

$max

Finds the maximum amount spent on an order.

db.orders.aggregate([
  {
    $group: {
      _id: null,
      maxAmount: { $max: "$amount" }
    }
  }
]);

$first

Gets the first order placed (by date).

db.orders.aggregate([
  { $sort: { "date": 1 } },
  {
    $group: {
      _id: null,
      firstOrder: { $first: "$$ROOT" }
    }
  }
]);

$last

Gets the last order placed (by date).

db.orders.aggregate([
  { $sort: { "date": -1 } },
  {
    $group: {
      _id: null,
      lastOrder: { $last: "$$ROOT" }
    }
  }
]);

So, we have covered basic CRUD operations, all major aggregation stages, and operations, and looked into resources for further learning.

版本聲明 本文轉載於:https://dev.to/bpk45_0670a02e0f3a6839b3a/mongodb-aggregation-pipelines-25mc?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • Go語言垃圾回收如何處理切片內存?
    Go語言垃圾回收如何處理切片內存?
    Garbage Collection in Go Slices: A Detailed AnalysisIn Go, a slice is a dynamic array that references an underlying array.使用切片時,了解垃圾收集行為至關重要,以避免潛在的內存洩...
    程式設計 發佈於2025-07-16
  • PHP陣列鍵值異常:了解07和08的好奇情況
    PHP陣列鍵值異常:了解07和08的好奇情況
    PHP數組鍵值問題,使用07&08 在給定數月的數組中,鍵值07和08呈現令人困惑的行為時,就會出現一個不尋常的問題。運行print_r($月份)返回意外結果:鍵“ 07”丟失,而鍵“ 08”分配給了9月的值。 此問題源於PHP對領先零的解釋。當一個數字帶有0(例如07或08)的前綴時,PHP...
    程式設計 發佈於2025-07-16
  • 如何有效地選擇熊貓數據框中的列?
    如何有效地選擇熊貓數據框中的列?
    在處理數據操作任務時,在Pandas DataFrames 中選擇列時,選擇特定列的必要條件是必要的。在Pandas中,選擇列的各種選項。 選項1:使用列名 如果已知列索引,請使用ILOC函數選擇它們。請注意,python索引基於零。 df1 = df.iloc [:,0:2]#使用索引0和1 ...
    程式設計 發佈於2025-07-16
  • 表單刷新後如何防止重複提交?
    表單刷新後如何防止重複提交?
    在Web開發中預防重複提交 在表格提交後刷新頁面時,遇到重複提交的問題是常見的。要解決這個問題,請考慮以下方法: 想像一下具有這樣的代碼段,看起來像這樣的代碼段:)){ //數據庫操作... 迴聲“操作完成”; 死(); } ? > ...
    程式設計 發佈於2025-07-16
  • Go語言如何動態發現導出包類型?
    Go語言如何動態發現導出包類型?
    與反射軟件包中的有限類型的發現能力相反,本文探討了在運行時發現所有包裝類型(尤其是struntime go import( “ FMT” “去/進口商” ) func main(){ pkg,err:= incorter.default()。導入(“ time”) ...
    程式設計 發佈於2025-07-16
  • 找到最大計數時,如何解決mySQL中的“組函數\”錯誤的“無效使用”?
    找到最大計數時,如何解決mySQL中的“組函數\”錯誤的“無效使用”?
    如何在mySQL中使用mySql 檢索最大計數,您可能會遇到一個問題,您可能會在嘗試使用以下命令:理解錯誤正確找到由名稱列分組的值的最大計數,請使用以下修改後的查詢: 計數(*)為c 來自EMP1 按名稱組 c desc訂購 限制1 查詢說明 select語句提取名稱列和每個名稱...
    程式設計 發佈於2025-07-16
  • 我可以將加密從McRypt遷移到OpenSSL,並使用OpenSSL遷移MCRYPT加密數據?
    我可以將加密從McRypt遷移到OpenSSL,並使用OpenSSL遷移MCRYPT加密數據?
    將我的加密庫從mcrypt升級到openssl 問題:是否可以將我的加密庫從McRypt升級到OpenSSL?如果是這樣,如何? 答案:是的,可以將您的Encryption庫從McRypt升級到OpenSSL。 可以使用openssl。 附加說明: [openssl_decrypt()函數要求...
    程式設計 發佈於2025-07-16
  • 為什麼PYTZ最初顯示出意外的時區偏移?
    為什麼PYTZ最初顯示出意外的時區偏移?
    與pytz 最初從pytz獲得特定的偏移。例如,亞洲/hong_kong最初顯示一個七個小時37分鐘的偏移: 差異源利用本地化將時區分配給日期,使用了適當的時區名稱和偏移量。但是,直接使用DateTime構造器分配時區不允許進行正確的調整。 example pytz.timezone(&#...
    程式設計 發佈於2025-07-16
  • Spark DataFrame添加常量列的妙招
    Spark DataFrame添加常量列的妙招
    在Spark Dataframe ,將常數列添加到Spark DataFrame,該列具有適用於所有行的任意值的Spark DataFrame,可以通過多種方式實現。使用文字值(SPARK 1.3)在嘗試提供直接值時,用於此問題時,旨在為此目的的column方法可能會導致錯誤。 df.withco...
    程式設計 發佈於2025-07-16
  • 如何克服PHP的功能重新定義限制?
    如何克服PHP的功能重新定義限制?
    克服PHP的函數重新定義限制在PHP中,多次定義一個相同名稱的函數是一個no-no。嘗試這樣做,如提供的代碼段所示,將導致可怕的“不能重新列出”錯誤。 但是,PHP工具腰帶中有一個隱藏的寶石:runkit擴展。它使您能夠靈活地重新定義函數。 runkit_function_renction_...
    程式設計 發佈於2025-07-16
  • 在UTF8 MySQL表中正確將Latin1字符轉換為UTF8的方法
    在UTF8 MySQL表中正確將Latin1字符轉換為UTF8的方法
    在UTF8表中將latin1字符轉換為utf8 ,您遇到了一個問題,其中含義的字符(例如,“jáuòiñe”)在utf8 table tabled tablesset中被extect(例如,“致電。為了解決此問題,您正在嘗試使用“ mb_convert_encoding”和“ iconv”轉換受...
    程式設計 發佈於2025-07-16
  • 如何使用FormData()處理多個文件上傳?
    如何使用FormData()處理多個文件上傳?
    )處理多個文件輸入時,通常需要處理多個文件上傳時,通常是必要的。 The fd.append("fileToUpload[]", files[x]); method can be used for this purpose, allowing you to send multi...
    程式設計 發佈於2025-07-16
  • 圖片在Chrome中為何仍有邊框? `border: none;`無效解決方案
    圖片在Chrome中為何仍有邊框? `border: none;`無效解決方案
    在chrome 在使用Chrome and IE9中的圖像時遇到的一個頻繁的問題是圍繞圖像的持續薄薄邊框,儘管指定了圖像,儘管指定了;和“邊境:無;”在CSS中。要解決此問題,請考慮以下方法: Chrome具有忽略“ border:none; none;”的已知錯誤,風格。要解決此問題,請使用以下...
    程式設計 發佈於2025-07-16
  • 人臉檢測失敗原因及解決方案:Error -215
    人臉檢測失敗原因及解決方案:Error -215
    錯誤處理:解決“ error:((-215)!empty()in Function Multultiscale中的“ openCV 要解決此問題,必須確保提供給HAAR CASCADE XML文件的路徑有效。在提供的代碼片段中,級聯分類器裝有硬編碼路徑,這可能對您的系統不准確。相反,OPENCV提...
    程式設計 發佈於2025-07-16
  • \“(1)vs.(;;):編譯器優化是否消除了性能差異?\”
    \“(1)vs.(;;):編譯器優化是否消除了性能差異?\”
    答案: 在大多數現代編譯器中,while(1)和(1)和(;;)之間沒有性能差異。編譯器: perl: 1 輸入 - > 2 2 NextState(Main 2 -E:1)V-> 3 9 Leaveloop VK/2-> A 3 toterloop(next-> 8 last-> 9 ...
    程式設計 發佈於2025-07-16

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3