」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 克服困難:賭場利潤背後的數學

克服困難:賭場利潤背後的數學

發佈於2024-08-01
瀏覽:257

您有没有想过为什么赌场似乎总是赢?在“击败赔率:赌场利润背后的数学”中,我们将探讨确保赌场长期盈利的简单数学和巧妙策略。通过易于理解的示例和蒙特卡罗模拟,我们将揭示房子边缘背后的秘密。准备好探索赌场如何扭转局面!

了解庄家优势

赌场优势是赌场世界的一个基本概念。它代表赌场期望从玩家每次下注中获得的平均利润。本质上,它是赌场长期保留的每笔赌注的百分比。

赌场优势的存在是因为赌场不根据游戏的“真实赔率”支付获胜赌注。真实赔率代表事件发生的实际概率。通过以略低的赔率支付,赌场可以确保他们随着时间的推移赚取利润。

赌场优势 (HE) 定义为赌场利润,以玩家原始赌注的百分比表示。

** 欧式轮盘** 只有一个绿色零,总共有 37 个数字。如果玩家在红色下注 1 美元,他们有 18/37 的机会赢得 1 美元,有 19/37 的机会输掉 1 美元。期望值为:

期望值=( 1 × 18/37 ​) ( −1 × 19/37 ​)= 18/37​ − 19/37​ = −1/37 ​≈ −2.7%

因此,在欧式轮盘中,赌场优势 (HE) 约为 2.7%。

让我们自己制作一个游戏来更好地理解它,一个简单的掷骰子游戏。

import random

def roll_dice():
    roll = random.randint(1, 100)

    if roll == 100:
        print(roll, 'You rolled a 100 and lost. Better luck next time!')
        return False
    elif roll 

在这个游戏中:

  • 如果掷骰值为 100,则玩家有 1/100 的几率失败。

  • 如果掷骰结果在 1 到 50 之间,则玩家有 50/100 的几率失败。

  • 如果掷骰结果在 51 到 99 之间,则玩家有 49/100 的获胜机会。

期望值 =(1× 49/100​) ( −1× 51/100​) = 49/100 − 51/100 ​= −2/100​ ≈ −2%

因此,庄家优势为2%。

了解蒙特卡罗模拟

蒙特卡罗模拟是一种强大的工具,用于通过对过程进行大量模拟并观察结果来理解和预测复杂系统。在赌场的背景下,蒙特卡罗模拟可以对各种投注场景进行建模,以显示赌场优势如何确保长期盈利能力。让我们探讨蒙特卡洛模拟的工作原理以及如何将它们应用于简单的赌场游戏。

什么是蒙特卡罗模拟?

蒙特卡罗模拟涉及生成随机变量来多次模拟过程并分析结果。通过执行数千甚至数百万次迭代,我们可以获得可能结果的分布,并深入了解不同事件的可能性。

将蒙特卡罗模拟应用于掷骰子游戏

我们将使用蒙特卡罗模拟来模拟我们之前讨论的掷骰子游戏。这将帮助我们了解赌场优势如何随着时间的推移影响游戏的盈利能力。

`def monte_carlo_simulation(trials):
    wins = 0
    losses = 0

    for _ in range(trials):
        if roll_dice():
            wins  = 1
        else:
            losses  = 1

    win_percentage = (wins / trials) * 100
    loss_percentage = (losses / trials) * 100
    houseEdge= loss_percentage-win_percentage
    print(f"After {trials} trials:")
    print(f"Win percentage: {win_percentage:.2f}%")
    print(f"Loss percentage: {loss_percentage:.2f}%")
    print(f"House Edge: {houseEdge:.2f}%")

# Run the simulation with 10,000,000 trials
monte_carlo_simulation(10000000)`

解释结果

在此模拟中,我们运行掷骰子游戏 10,000,000 次以观察输赢百分比。鉴于之前计算的赌场优势 (2%),我们预计输钱百分比将略高于赢钱百分比。

运行模拟后,您可能会看到如下结果:

Beating the Odds: The Mathematics Behind Casino Profits

这些结果与理论概率(49% 获胜,51% 失败)密切相关,展示了赌场优势在大量试验中的表现。轻微的不平衡保证了赌场的长期盈利能力。

可视化短期胜利和长期损失

蒙特卡洛模拟对于通过重复随机抽样来建模和预测结果非常有用。在赌博的背景下,我们可以使用蒙特卡罗模拟来了解不同投注策略的潜在结果。

我们将模拟单个投注者在每一轮中进行相同的初始投注,并观察他们的账户价值在指定投注次数内如何变化。

以下是我们如何使用 Matplotlib 模拟和可视化投注过程:

def bettor_simulation(funds, initial_wager, wager_count):
    value = funds
    wager = initial_wager

    # Lists to store wager count and account value
    wX = []
    vY = []

    current_wager = 1

    while current_wager 

Beating the Odds: The Mathematics Behind Casino Profits

此图说明了投注者的账户价值如何因输赢而随时间波动。最初,可能会有一段获胜的时期(绿线高于起始值),但随着投注次数的增加,赌场优势的累积效应变得明显。最终,投注者的账户价值往往会下降到接近或低于初始资金(灰线),表明长期损失。

结论

了解赌场利润背后的数学原理,可以通过赌场优势的概念揭示赌场在每场游戏中的明显优势。尽管偶尔会获胜,但赌场游戏中内置的概率确保大多数玩家随着时间的推移会输钱。蒙特卡洛模拟生动地说明了这些动态,表明由于赌场的统计优势,即使是短期胜利也可以掩盖长期损失。这种对赌场盈利能力的数学确定性的洞察强调了明智决策和负责任赌博实践的重要性。

接下来,我们可以探索其他可视化或变化,例如比较不同的投注策略或分析不同的初始投注对投注者结果的影响。

保持联系:

  • GitHub:ezhillragesh

  • Twitter:ezhillragesh

  • 网站:ragesh.me

请随时分享您的想法、提出问题并参与讨论。

编码愉快!

版本聲明 本文轉載於:https://dev.to/ezhillragesh/beating-the-odds-the-mathematics-behind-casino-profits-313o?1如有侵犯,請洽[email protected]刪除
最新教學 更多>
  • 如何將多種用戶類型(學生,老師和管理員)重定向到Firebase應用中的各自活動?
    如何將多種用戶類型(學生,老師和管理員)重定向到Firebase應用中的各自活動?
    Red: How to Redirect Multiple User Types to Respective ActivitiesUnderstanding the ProblemIn a Firebase-based voting app with three distinct user type...
    程式設計 發佈於2025-04-11
  • 如何在GO編譯器中自定義編譯優化?
    如何在GO編譯器中自定義編譯優化?
    在GO編譯器中自定義編譯優化 GO中的默認編譯過程遵循特定的優化策略。 However, users may need to adjust these optimizations for specific requirements.Optimization Control in Go Compi...
    程式設計 發佈於2025-04-11
  • 如何在php中使用捲髮發送原始帖子請求?
    如何在php中使用捲髮發送原始帖子請求?
    如何使用php 然後,配置以下選項: curlopt_url:請求 [要發送的原始數據指定內容類型,為原始的帖子請求指定身體的內容類型很重要。在這種情況下,它是文本/平原。要執行此操作,請使用包含以下標頭的數組使用curlopt_httpheader選項:響應將存儲在變量$ result。 示例代...
    程式設計 發佈於2025-04-11
  • 如何實時捕獲和流媒體以進行聊天機器人命令執行?
    如何實時捕獲和流媒體以進行聊天機器人命令執行?
    在開發能夠執行命令的chatbots的領域中,實時從命令執行實時捕獲Stdout,一個常見的需求是能夠檢索和顯示標準輸出(stdout)在cath cath cant cant cant cant cant cant cant cant interfaces in Chate cant inter...
    程式設計 發佈於2025-04-11
  • 如何將PANDAS DataFrame列轉換為DateTime格式並按日期過濾?
    如何將PANDAS DataFrame列轉換為DateTime格式並按日期過濾?
    Transform Pandas DataFrame Column to DateTime FormatScenario:Data within a Pandas DataFrame often exists in various formats, including strings.使用時間數據時...
    程式設計 發佈於2025-04-11
  • 如何檢查對像是否具有Python中的特定屬性?
    如何檢查對像是否具有Python中的特定屬性?
    方法來確定對象屬性存在尋求一種方法來驗證對像中特定屬性的存在。考慮以下示例,其中嘗試訪問不確定屬性會引起錯誤: >>> a = someClass() >>> A.property Trackback(最近的最新電話): 文件“ ”,第1行, AttributeError: SomeClass...
    程式設計 發佈於2025-04-11
  • 如何在其容器中為DIV創建平滑的左右CSS動畫?
    如何在其容器中為DIV創建平滑的左右CSS動畫?
    通用CSS動畫,用於左右運動 ,我們將探索創建一個通用的CSS動畫,以向左和右移動DIV,從而到達其容器的邊緣。該動畫可以應用於具有絕對定位的任何div,無論其未知長度如何。 問題:使用左直接導致瞬時消失 更加流暢的解決方案:混合轉換和左 [並實現平穩的,線性的運動,我們介紹了線性的轉換。...
    程式設計 發佈於2025-04-11
  • PHP陣列鍵值異常:了解07和08的好奇情況
    PHP陣列鍵值異常:了解07和08的好奇情況
    PHP數組鍵值問題,使用07&08 在給定數月的數組中,鍵值07和08呈現令人困惑的行為時,就會出現一個不尋常的問題。運行print_r($月)返回意外結果:鍵“ 07”丟失,而鍵“ 08”分配給了9月的值。 此問題源於PHP對領先零的解釋。當一個數字帶有0(例如07或08)的前綴時,PHP將...
    程式設計 發佈於2025-04-11
  • 如何克服PHP的功能重新定義限制?
    如何克服PHP的功能重新定義限制?
    克服PHP的函數重新定義限制在PHP中,多次定義一個相同名稱的函數是一個no-no。嘗試這樣做,如提供的代碼段所示,將導致可怕的“不能重新列出”錯誤。 但是,PHP工具腰帶中有一個隱藏的寶石:runkit擴展。它使您能夠靈活地重新定義函數。 runkit_function_renction_...
    程式設計 發佈於2025-04-11
  • 如何使用組在MySQL中旋轉數據?
    如何使用組在MySQL中旋轉數據?
    在關係數據庫中使用mySQL組使用mySQL組進行查詢結果,在關係數據庫中使用MySQL組,轉移數據的數據是指重新排列的行和列的重排以增強數據可視化。在這裡,我們面對一個共同的挑戰:使用組的組將數據從基於行的基於列的轉換為基於列。 Let's consider the following ...
    程式設計 發佈於2025-04-11
  • 如何干淨地刪除匿名JavaScript事件處理程序?
    如何干淨地刪除匿名JavaScript事件處理程序?
    刪除匿名事件偵聽器將匿名事件偵聽器添加到元素中會提供靈活性和簡單性,但是當要刪除它們時,可以構成挑戰,而無需替換元素本身就可以替換一個問題。 element? element.addeventlistener(event,function(){/在這里工作/},false); 要解決此問題,請考...
    程式設計 發佈於2025-04-11
  • 如何使用Python理解有效地創建字典?
    如何使用Python理解有效地創建字典?
    在python中,詞典綜合提供了一種生成新詞典的簡潔方法。儘管它們與列表綜合相似,但存在一些顯著差異。 與問題所暗示的不同,您無法為鑰匙創建字典理解。您必須明確指定鍵和值。 For example:d = {n: n**2 for n in range(5)}This creates a dict...
    程式設計 發佈於2025-04-11
  • 我可以將加密從McRypt遷移到OpenSSL,並使用OpenSSL遷移MCRYPT加密數據?
    我可以將加密從McRypt遷移到OpenSSL,並使用OpenSSL遷移MCRYPT加密數據?
    將我的加密庫從mcrypt升級到openssl 問題:是否可以將我的加密庫從McRypt升級到OpenSSL?如果是這樣,如何? 答案:是的,可以將您的Encryption庫從McRypt升級到OpenSSL。 可以使用openssl。 附加說明: [openssl_decrypt()函數要求...
    程式設計 發佈於2025-04-11
  • 如何修復\“常規錯誤:2006 MySQL Server在插入數據時已經消失\”?
    如何修復\“常規錯誤:2006 MySQL Server在插入數據時已經消失\”?
    How to Resolve "General error: 2006 MySQL server has gone away" While Inserting RecordsIntroduction:Inserting data into a MySQL database can...
    程式設計 發佈於2025-04-11
  • 如何有效地選擇熊貓數據框中的列?
    如何有效地選擇熊貓數據框中的列?
    在處理數據操作任務時,在Pandas DataFrames 中選擇列時,選擇特定列的必要條件是必要的。在Pandas中,選擇列的各種選項。 選項1:使用列名 如果已知列索引,請使用ILOC函數選擇它們。請注意,python索引基於零。 df1 = df.iloc [:,0:2]#使用索引0和1 ...
    程式設計 發佈於2025-04-11

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3