Les affectations chaînées dans Pandas, une bibliothèque de manipulation de données populaire, sont des opérations effectuées successivement sur les valeurs d'un bloc de données. Cela peut entraîner des problèmes de performances si les opérations ne sont pas gérées correctement.
Pandas émet des avertissements SettingWithCopy pour indiquer des inefficacités potentielles dans les affectations chaînées. Les avertissements avertissent les utilisateurs que les affectations peuvent ne pas mettre à jour le bloc de données d'origine comme prévu.
Lorsqu'une série Pandas ou un bloc de données est référencé, une copie est renvoyée. Cela peut conduire à des erreurs si l'objet référencé est modifié ultérieurement. Par exemple, le code suivant peut ne pas se comporter comme prévu :
data['amount'] = data['amount'].fillna(float)
L'affectation ci-dessus crée un copie de la série data['amount'], qui est ensuite mise à jour. Cela empêche la mise à jour du bloc de données d'origine.
Pour éviter de créer des copies inutiles, Pandas fournit des opérations sur place désignées par .inplace (True). Ces opérations modifient directement le bloc de données d'origine :
data['amount'].fillna(data.groupby('num')['amount'].transform('mean'), inplace=True)
L'utilisation d'opérations sur place ou d'affectations distinctes présente plusieurs avantages :
data['amount'] = data['amount'].fillna(mean_avg) * 2
Comprendre les affectations chaînées dans Pandas est crucial pour optimiser l'efficacité du code et éviter les erreurs de modification des données. En adhérant aux pratiques recommandées décrites dans cet article, vous pouvez garantir l'exactitude et les performances de vos opérations Pandas.
Clause de non-responsabilité: Toutes les ressources fournies proviennent en partie d'Internet. En cas de violation de vos droits d'auteur ou d'autres droits et intérêts, veuillez expliquer les raisons détaillées et fournir une preuve du droit d'auteur ou des droits et intérêts, puis l'envoyer à l'adresse e-mail : [email protected]. Nous nous en occuperons pour vous dans les plus brefs délais.
Copyright© 2022 湘ICP备2022001581号-3