„Wenn ein Arbeiter seine Arbeit gut machen will, muss er zuerst seine Werkzeuge schärfen.“ – Konfuzius, „Die Gespräche des Konfuzius. Lu Linggong“
Titelseite > Programmierung > Polars vs. Pandas Eine neue Ära der Datenrahmen in Python?

Polars vs. Pandas Eine neue Ära der Datenrahmen in Python?

Veröffentlicht am 27.09.2024
Durchsuche:755

Polars vs. Pandas A New Era of Dataframes in Python ?

Polare vs. Pandas: Was ist der Unterschied?

Wenn Sie über die neuesten Python-Entwicklungen auf dem Laufenden sind, haben Sie wahrscheinlich von Polars gehört, einer neuen Bibliothek für die Arbeit mit Daten. Während pandas seit langem die Bibliothek der Wahl ist, schlägt Polars Wellen, insbesondere bei der Verarbeitung großer Datenmengen. Was ist also das große Problem mit Polars? Wie unterscheidet es sich von Pandas? Lass es uns aufschlüsseln.


Was sind Polaren?

Polars ist eine kostenlose Open-Source-Bibliothek, die auf Rust (einer schnellen, modernen Programmiersprache) basiert. Es soll Python-Entwicklern helfen, Daten schneller und effizienter zu verarbeiten. Betrachten Sie es als eine Alternative zu Pandas, die glänzt, wenn Sie mit wirklich großen Datensätzen arbeiten, mit denen Pandas möglicherweise Probleme haben.


Warum wurden Polars geschaffen?

Pandas gibt es schon seit Jahren und viele Menschen nutzen es immer noch gerne. Da die Daten jedoch immer größer und komplexer wurden, zeigten Pandas einige Schwächen. Ritchie Vink, der Erfinder von Polars, bemerkte diese Probleme und beschloss, etwas schnelleres und effizienteres zu entwickeln. Sogar Wes McKinney, der Erfinder von Pandas, gab in einem Blogbeitrag mit dem Titel „10 Dinge, die ich an Pandas hasse“ zu, dass Pandas einige Verbesserungen gebrauchen könnten, insbesondere bei großen Datensätzen.

Hier kommt Polars ins Spiel: Es ist blitzschnell und speichereffizient – ​​zwei Dinge, mit denen Pandas beim Umgang mit großen Datenmengen zu kämpfen haben.


Hauptunterschiede: Polars vs. Pandas

1. Geschwindigkeit

Polars ist wirklich schnell. Tatsächlich zeigen einige Benchmarks, dass Polars bei der Ausführung allgemeiner Vorgänge wie dem Filtern oder Gruppieren von Daten bis zu 5–10-mal schneller als Pandas sein können. Dieser Geschwindigkeitsunterschied macht sich besonders bemerkbar, wenn Sie mit großen Datenmengen arbeiten.

2. Speichernutzung

Polars ist viel effizienter, wenn es um den Speicher geht. Es verbraucht etwa fünf- bis zehnmal weniger Speicher als Pandas, was bedeutet, dass Sie mit viel größeren Datensätzen arbeiten können, ohne auf Speicherprobleme zu stoßen.

3. Verzögerte Ausführung

Polars verwendet etwas namens Lazy Execution, was bedeutet, dass nicht jede Operation sofort ausgeführt wird, während Sie sie schreiben. Stattdessen wartet es, bis Sie eine Reihe von Operationen geschrieben haben, und führt sie dann alle auf einmal aus. Dies hilft dabei, Dinge zu optimieren und schneller auszuführen. Pandas hingegen führt jeden Vorgang sofort aus, was bei großen Aufgaben langsamer sein kann.

4. Multithreading

Polars kann mehrere CPU-Kerne gleichzeitig verwenden, um Daten zu verarbeiten, was die Verarbeitung großer Datenmengen noch schneller macht. Pandas ist größtenteils Single-Threaded, was bedeutet, dass es jeweils nur einen CPU-Kern nutzen kann, was insbesondere bei großen Datensätzen zu einer Verlangsamung führt.


Warum ist Polars so schnell?

Polars ist aus mehreren Gründen schnell:

  • Es basiert auf Rust, einer Programmiersprache, die für ihre Geschwindigkeit und Sicherheit bekannt ist, was sie äußerst effizient macht.
  • Es verwendet Apache Arrow, eine spezielle Methode zum Speichern von Daten im Speicher, die die Arbeit mit verschiedenen Programmiersprachen einfacher und schneller macht.

Diese Kombination aus Rust und Apache Arrow verschafft Polars einen Vorsprung gegenüber Pandas, wenn es um Geschwindigkeit und Speichernutzung geht.


Stärken und Grenzen von Pandas

Während Polars großartig für Big Data ist, hat Pandas immer noch seinen Platz. Pandas funktioniert sehr gut mit kleinen bis mittelgroßen Datensätzen und gibt es schon so lange, dass es über unzählige Funktionen und eine riesige Community verfügt. Wenn Sie also nicht mit großen Datenmengen arbeiten, sind Pandas möglicherweise immer noch die beste Option.

Je größer Ihre Datensätze werden, desto mehr Speicher verbrauchen Pandas und sie werden langsamer, was Polars in solchen Situationen zu einer besseren Wahl macht.


Wann sollten Sie Polaren verwenden?

Sie sollten die Verwendung von Polaren in Betracht ziehen, wenn:

  • Sie arbeiten mit großen Datensätzen (Millionen oder Milliarden Zeilen).
  • Sie benötigen Geschwindigkeit und Leistung, um Ihre Aufgaben schnell zu erledigen.
  • Sie haben Speicherbeschränkungen und müssen bei der RAM-Nutzung sparen.

Abschluss

Sowohl Eisbären als auch Pandas haben ihre Stärken. Wenn Sie mit kleinen bis mittleren Datensätzen arbeiten, ist Pandas immer noch ein großartiges Werkzeug. Wenn Sie jedoch mit großen Datensätzen arbeiten und etwas schnelleres und speichereffizienteres benötigen, ist Polars auf jeden Fall einen Versuch wert. Seine Leistungssteigerungen dank Rust und Apache Arrow machen es zu einer fantastischen Option für datenintensive Aufgaben.

Während sich Python weiterentwickelt, könnte Polars zum neuen Goto-Tool für den Umgang mit großen Datenmengen werden.

Viel Spaß beim Codieren? ?

Freigabeerklärung Dieser Artikel ist abgedruckt unter: https://dev.to/aashwinkumar/polars-vs-pandas-a-new-era-of-dataframes-in-python--1654?1 Bei Verstößen wenden Sie sich bitte an Study_golang@ 163.com, um es zu löschen
Neuestes Tutorial Mehr>

Haftungsausschluss: Alle bereitgestellten Ressourcen stammen teilweise aus dem Internet. Wenn eine Verletzung Ihres Urheberrechts oder anderer Rechte und Interessen vorliegt, erläutern Sie bitte die detaillierten Gründe und legen Sie einen Nachweis des Urheberrechts oder Ihrer Rechte und Interessen vor und senden Sie ihn dann an die E-Mail-Adresse: [email protected] Wir werden die Angelegenheit so schnell wie möglich für Sie erledigen.

Copyright© 2022 湘ICP备2022001581号-3