注意:此代码是用Python 3.6.1(Gensim 2.3.0)编写的
word2vec与Gensim的Python实现及应用
原始论文:Mikolov, T.、Chen, K.、Corrado, G. 和 Dean, J. (2013)。向量空间中单词表示的有效估计。 arXiv 预印本 arXiv:1301.3781.
import re import numpy as np from gensim.models import Word2Vec from nltk.corpus import gutenberg from multiprocessing import Pool from scipy import spatial
sentences = list(gutenberg.sents('shakespeare-hamlet.txt')) # import the corpus and convert into a list print('Type of corpus: ', type(sentences)) print('Length of corpus: ', len(sentences))
语料库类型:class 'list'
语料长度:3106
print(sentences[0]) # title, author, and year print(sentences[1]) print(sentences[10])
['[', 'The', '悲剧', 'of', '哈姆雷特', 'by', '威廉', '莎士比亚', '1599', ']']
['Actus', 'Primus', '.']
['弗兰', '.']
预处理数据
for i in range(len(sentences)): sentences[i] = [word.lower() for word in sentences[i] if re.match('^[a-zA-Z] ', word)] print(sentences[0]) # title, author, and year print(sentences[1]) print(sentences[10])
['the'、'悲剧'、'of'、'哈姆雷特'、'by'、'威廉'、'莎士比亚']
['actus', 'primus']
['弗兰']
model = Word2Vec(sentences = sentences, size = 100, sg = 1, window = 3, min_count = 1, iter = 10, workers = Pool()._processes) model.init_sims(replace = True)
model.save('word2vec_model') model = Word2Vec.load('word2vec_model')
model.most_similar('hamlet')
[('horatio', 0.9978846311569214),
('女王', 0.9971947073936462),
('莱尔特斯', 0.9971820116043091),
('国王', 0.9968599081039429),
('妈妈', 0.9966716170310974),
('哪里', 0.9966292381286621),
('迪尔', 0.9965540170669556),
('奥菲莉亚', 0.9964221715927124),
('非常', 0.9963752627372742),
('哦', 0.9963476657867432)]
v1 = model['king'] v2 = model['queen'] # define a function that computes cosine similarity between two words def cosine_similarity(v1, v2): return 1 - spatial.distance.cosine(v1, v2) cosine_similarity(v1, v2)
0.99437165260314941
免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。
Copyright© 2022 湘ICP备2022001581号-3