”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 处理多波段栅格(Sentinel-with hndex 并创建索引

处理多波段栅格(Sentinel-with hndex 并创建索引

发布于2024-08-25
浏览:406

嗨,在之前的博客中,我们讨论了如何使用 h3 索引和 postgresql 对单波段栅格进行栅格分析。在本博客中,我们将讨论如何处理多波段栅格并轻松创建索引。我们将使用 Sentinel-2 图像并从处理后的 h3 细胞创建 NDVI 并可视化结果

下载哨兵2数据

我们正在从尼泊尔博卡拉地区的 https://apps.sentinel-hub.com/eo-browser/ 下载哨兵 2 数据,只是为了确保湖泊位于图像网格中,以便于我们验证NDVI结果

Process multiband rasters (Sentinel-with hndex and create indices

下载所有波段的哨兵图像:

  • 您需要创建一个帐户
  • 查找您所在区域的图像,选择覆盖您感兴趣区域的网格
  • 缩放至网格,然后点击右侧竖条上的Process multiband rasters (Sentinel-with hndex and create indices图标
  • 之后转到分析选项卡并选择图像格式为 tiff 32 位、高分辨率、wgs1984 格式的所有波段并选中所有波段

Process multiband rasters (Sentinel-with hndex and create indices

您还可以下载预生成的指数,例如 NDVI、仅假色 tiff 或最适合您需要的特定波段。我们正在下载所有频段,因为我们想自己进行处理

  • 点击下载

Process multiband rasters (Sentinel-with hndex and create indices

预处理

当我们下载原始格式时,我们将所有频段作为与哨兵分开的 tiff

Process multiband rasters (Sentinel-with hndex and create indices

  • 让我们创建一个合成图像:

这可以通过 GIS 工具或 gdal 来完成

  1. 使用 gdal_merge:

我们需要将下载的文件重命名为 band1,band2 以避免文件名中出现斜杠
本练习中我们最多处理频段 9,您可以根据需要选择频段

gdal_merge.py -separate -o sentinel2_composite.tif band1.tif band2.tif band3.tif band4.tif band5.tif band6.tif band7.tif band8.tif band9.tif 
  1. 使用QGIS :
  • 加载所有单独的波段到QGIS
  • 转到栅格 > 其他 > 合并

Process multiband rasters (Sentinel-with hndex and create indices

  • 合并时,您需要确保选中“将每个输入文件放入 sep band”

Process multiband rasters (Sentinel-with hndex and create indices

  • 现在将合并的 tiff 作为复合材料导出到原始 geotiff

家政

  • 确保您的图像采用 WGS1984 在我们的例子中,图像已经是 ws1984,所以不需要转换
  • 确保您没有任何 nodata 如果有则用 0 填充
  gdalwarp -overwrite -dstnodata 0 "$input_file" "${output_file}_nodata.tif"
  • 最后确保您的输出图像是 COG 格式
  gdal_translate -of COG "$input_file" "$output_file"

我正在使用 cog2h3 repo 中提供的 bash 脚本来自动化这些

sudo bash pre.sh sentinel2_composite.tif

h3细胞的处理和创建

现在,我们终于完成了预处理脚本,让我们继续计算复合齿轮图像中每个波段的 h3 单元格

  • 安装cog2h3
  pip install cog2h3
  • 导出您的数据库凭据
  export DATABASE_URL="postgresql://user:password@host:port/database"
  • 跑步

我们对此哨兵图像使用分辨率 10,但是您还会在脚本本身中看到,它将打印栅格的最佳分辨率,使 h3 单元小于栅格中的最小像素。

  cog2h3 --cog sentinel2_composite_preprocessed.tif --table sentinel --multiband --res 10

我们花了一分钟的时间来计算结果并将其存储在 postgresql 中

日志:

2024-08-24 08:39:43,233 - INFO - Starting processing
2024-08-24 08:39:43,234 - INFO - COG file already exists at sentinel2_composite_preprocessed.tif
2024-08-24 08:39:43,234 - INFO - Processing raster file: sentinel2_composite_preprocessed.tif
2024-08-24 08:39:43,864 - INFO - Determined Min fitting H3 resolution for band 1: 11
2024-08-24 08:39:43,865 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:44,037 - INFO - Resampling Done for band 1
2024-08-24 08:39:44,037 - INFO - New Native H3 resolution for band 1: 10
2024-08-24 08:39:44,738 - INFO - Calculation done for res:10 band:1
2024-08-24 08:39:44,749 - INFO - Determined Min fitting H3 resolution for band 2: 11
2024-08-24 08:39:44,749 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:44,757 - INFO - Resampling Done for band 2
2024-08-24 08:39:44,757 - INFO - New Native H3 resolution for band 2: 10
2024-08-24 08:39:45,359 - INFO - Calculation done for res:10 band:2
2024-08-24 08:39:45,366 - INFO - Determined Min fitting H3 resolution for band 3: 11
2024-08-24 08:39:45,366 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:45,374 - INFO - Resampling Done for band 3
2024-08-24 08:39:45,374 - INFO - New Native H3 resolution for band 3: 10
2024-08-24 08:39:45,986 - INFO - Calculation done for res:10 band:3
2024-08-24 08:39:45,994 - INFO - Determined Min fitting H3 resolution for band 4: 11
2024-08-24 08:39:45,994 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:46,003 - INFO - Resampling Done for band 4
2024-08-24 08:39:46,003 - INFO - New Native H3 resolution for band 4: 10
2024-08-24 08:39:46,605 - INFO - Calculation done for res:10 band:4
2024-08-24 08:39:46,612 - INFO - Determined Min fitting H3 resolution for band 5: 11
2024-08-24 08:39:46,612 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:46,619 - INFO - Resampling Done for band 5
2024-08-24 08:39:46,619 - INFO - New Native H3 resolution for band 5: 10
2024-08-24 08:39:47,223 - INFO - Calculation done for res:10 band:5
2024-08-24 08:39:47,230 - INFO - Determined Min fitting H3 resolution for band 6: 11
2024-08-24 08:39:47,230 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:47,239 - INFO - Resampling Done for band 6
2024-08-24 08:39:47,239 - INFO - New Native H3 resolution for band 6: 10
2024-08-24 08:39:47,829 - INFO - Calculation done for res:10 band:6
2024-08-24 08:39:47,837 - INFO - Determined Min fitting H3 resolution for band 7: 11
2024-08-24 08:39:47,837 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:47,845 - INFO - Resampling Done for band 7
2024-08-24 08:39:47,845 - INFO - New Native H3 resolution for band 7: 10
2024-08-24 08:39:48,445 - INFO - Calculation done for res:10 band:7
2024-08-24 08:39:48,453 - INFO - Determined Min fitting H3 resolution for band 8: 11
2024-08-24 08:39:48,453 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:48,461 - INFO - Resampling Done for band 8
2024-08-24 08:39:48,461 - INFO - New Native H3 resolution for band 8: 10
2024-08-24 08:39:49,046 - INFO - Calculation done for res:10 band:8
2024-08-24 08:39:49,054 - INFO - Determined Min fitting H3 resolution for band 9: 11
2024-08-24 08:39:49,054 - INFO - Resampling original raster to: 200.786148m
2024-08-24 08:39:49,062 - INFO - Resampling Done for band 9
2024-08-24 08:39:49,063 - INFO - New Native H3 resolution for band 9: 10
2024-08-24 08:39:49,647 - INFO - Calculation done for res:10 band:9
2024-08-24 08:39:51,435 - INFO - Converting H3 indices to hex strings
2024-08-24 08:39:51,906 - INFO - Overall raster calculation done in 8 seconds
2024-08-24 08:39:51,906 - INFO - Creating or replacing table sentinel in database
2024-08-24 08:40:03,153 - INFO - Table sentinel created or updated successfully in 11.25 seconds.
2024-08-24 08:40:03,360 - INFO - Processing completed

分析

现在我们的数据已经在postgresql中了,让我们做一些分析

  • 验证我们是否拥有已处理的所有频段(请记住我们从频段 1 到 9 进行了处理)
select *
from sentinel

Process multiband rasters (Sentinel-with hndex and create indices

  • 计算每个单元的 ndvi
explain analyze 
select h3_ix , (band8-band4)/(band8 band4) as ndvi
from public.sentinel

查询计划:

QUERY PLAN                                                                                                       |
----------------------------------------------------------------------------------------------------------------- 
Seq Scan on sentinel  (cost=0.00..28475.41 rows=923509 width=16) (actual time=0.014..155.049 rows=923509 loops=1)|
Planning Time: 0.080 ms                                                                                          |
Execution Time: 183.764 ms                                                                                       |

正如您在此处看到的那样,对于该区域中的所有行,计算都是即时的。对于所有其他索引都是如此,您可以使用 h3_ix 主键计算与其他表的复杂索引连接,并从中导出有意义的结果,而不必担心,因为 postgresql 能够处理复杂的查询和表连接。

可视化和验证

让我们可视化并验证计算的索引是否正确

  • 创建表格(用于在 QGIS 中可视化)
create table ndvi_sentinel
as(
select h3_ix , (band8-band4)/(band8 band4) as ndvi
from public.sentinel )
  • 让我们添加几何图形来可视化 h3 单元格 这仅是在 QGIS 中可视化所必需的,如果您自己构建一个最小的 API,则不需要它,因为您可以直接从查询构造几何图形
ALTER TABLE ndvi_sentinel  
ADD COLUMN geometry geometry(Polygon, 4326) 
GENERATED ALWAYS AS (h3_cell_to_boundary_geometry(h3_ix)) STORED;
  • 在几何体上创建索引
create index on ndvi_sentinel(geometry);
  • 在QGIS中连接数据库并根据ndvi值可视化表格 让我们获取费瓦湖或云附近的区域

Process multiband rasters (Sentinel-with hndex and create indices

据我们所知,-1.0 到 0.1 之间的值应该代表深水或浓密的云层
让我们看看这是否属实(使第一个类别透明以查看底层图像)

  • 检查云:

Process multiband rasters (Sentinel-with hndex and create indices

  • 检查湖

Process multiband rasters (Sentinel-with hndex and create indices
由于湖周围有云,因此附近的田野被云覆盖,这是有道理的

Process multiband rasters (Sentinel-with hndex and create indices

感谢您的阅读!下一篇博客见

版本声明 本文转载于:https://dev.to/krschap/process-multiband-rasters-sentinel-2-with-h3-index-and-create-indices-bem?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何在其容器中为DIV创建平滑的左右CSS动画?
    如何在其容器中为DIV创建平滑的左右CSS动画?
    通用CSS动画,用于左右运动 ,我们将探索创建一个通用的CSS动画,以向左和右移动DIV,从而到达其容器的边缘。该动画可以应用于具有绝对定位的任何div,无论其未知长度如何。问题:使用左直接导致瞬时消失 更加流畅的解决方案:混合转换和左 [并实现平稳的,线性的运动,我们介绍了线性的转换。这...
    编程 发布于2025-04-05
  • 哪种在JavaScript中声明多个变量的方法更可维护?
    哪种在JavaScript中声明多个变量的方法更可维护?
    在JavaScript中声明多个变量:探索两个方法在JavaScript中,开发人员经常遇到需要声明多个变量的需要。对此的两种常见方法是:在单独的行上声明每个变量: 当涉及性能时,这两种方法本质上都是等效的。但是,可维护性可能会有所不同。 第一个方法被认为更易于维护。每个声明都是其自己的语句,使其...
    编程 发布于2025-04-05
  • 为什么使用固定定位时,为什么具有100%网格板柱的网格超越身体?
    为什么使用固定定位时,为什么具有100%网格板柱的网格超越身体?
    网格超过身体,用100%grid-template-columns 为什么在grid-template-colms中具有100%的显示器,当位置设置为设置的位置时,grid-template-colly修复了?问题: 考虑以下CSS和html: class =“ snippet-code”> g...
    编程 发布于2025-04-05
  • 为什么PHP的DateTime :: Modify('+1个月')会产生意外的结果?
    为什么PHP的DateTime :: Modify('+1个月')会产生意外的结果?
    使用php dateTime修改月份:发现预期的行为在使用PHP的DateTime类时,添加或减去几个月可能并不总是会产生预期的结果。正如文档所警告的那样,“当心”这些操作的“不像看起来那样直观。 考虑文档中给出的示例:这是内部发生的事情: 现在在3月3日添加另一个月,因为2月在2001年只有2...
    编程 发布于2025-04-05
  • 如何使用Python理解有效地创建字典?
    如何使用Python理解有效地创建字典?
    在python中,词典综合提供了一种生成新词典的简洁方法。尽管它们与列表综合相似,但存在一些显着差异。与问题所暗示的不同,您无法为钥匙创建字典理解。您必须明确指定键和值。 For example:d = {n: n**2 for n in range(5)}This creates a dicti...
    编程 发布于2025-04-05
  • 如何从Python中的字符串中删除表情符号:固定常见错误的初学者指南?
    如何从Python中的字符串中删除表情符号:固定常见错误的初学者指南?
    从python import codecs import codecs import codecs 导入 text = codecs.decode('这狗\ u0001f602'.encode('utf-8'),'utf-8') 印刷(文字)#带有...
    编程 发布于2025-04-05
  • 可以在纯CS中将多个粘性元素彼此堆叠在一起吗?
    可以在纯CS中将多个粘性元素彼此堆叠在一起吗?
    [2这里: https://webthemez.com/demo/sticky-multi-header-scroll/index.html </main> <section> { display:grid; grid-template-...
    编程 发布于2025-04-05
  • 在程序退出之前,我需要在C ++中明确删除堆的堆分配吗?
    在程序退出之前,我需要在C ++中明确删除堆的堆分配吗?
    在C中的显式删除 在C中的动态内存分配时,开发人员通常会想知道是否有必要在heap-procal extrable exit exit上进行手动调用“ delete”操作员,但开发人员通常会想知道是否需要手动调用“ delete”操作员。本文深入研究了这个主题。 在C主函数中,使用了动态分配变量(H...
    编程 发布于2025-04-05
  • 如何在Java的全屏独家模式下处理用户输入?
    如何在Java的全屏独家模式下处理用户输入?
    Handling User Input in Full Screen Exclusive Mode in JavaIntroductionWhen running a Java application in full screen exclusive mode, the usual event ha...
    编程 发布于2025-04-05
  • 如何使用Python有效地以相反顺序读取大型文件?
    如何使用Python有效地以相反顺序读取大型文件?
    在python 中,如果您使用一个大文件,并且需要从最后一行读取其内容,则在第一行到第一行,Python的内置功能可能不合适。这是解决此任务的有效解决方案:反向行读取器生成器 == ord('\ n'): 缓冲区=缓冲区[:-1] ...
    编程 发布于2025-04-05
  • 如何使用Python的请求和假用户代理绕过网站块?
    如何使用Python的请求和假用户代理绕过网站块?
    如何使用Python的请求模拟浏览器行为,以及伪造的用户代理提供了一个用户 - 代理标头一个有效方法是提供有效的用户式header,以提供有效的用户 - 设置,该标题可以通过browser和Acterner Systems the equestersystermery和操作系统。通过模仿像Chro...
    编程 发布于2025-04-05
  • 如何处理PHP文件系统功能中的UTF-8文件名?
    如何处理PHP文件系统功能中的UTF-8文件名?
    在PHP的Filesystem functions中处理UTF-8 FileNames 在使用PHP的MKDIR函数中含有UTF-8字符的文件很多flusf-8字符时,您可能会在Windows Explorer中遇到comploreer grounder grounder grounder gro...
    编程 发布于2025-04-05
  • 您如何在Laravel Blade模板中定义变量?
    您如何在Laravel Blade模板中定义变量?
    在Laravel Blade模板中使用Elegance 在blade模板中如何分配变量对于存储以后使用的数据至关重要。在使用“ {{}}”分配变量的同时,它可能并不总是最优雅的解决方案。幸运的是,Blade通过@php Directive提供了更优雅的方法: $ old_section =“...
    编程 发布于2025-04-05
  • 如何干净地删除匿名JavaScript事件处理程序?
    如何干净地删除匿名JavaScript事件处理程序?
    删除匿名事件侦听器将匿名事件侦听器添加到元素中会提供灵活性和简单性,但是当要删除它们时,可以构成挑战,而无需替换元素本身就可以替换一个问题。 element? element.addeventlistener(event,function(){/在这里工作/},false); 要解决此问题,请考虑...
    编程 发布于2025-04-05
  • Android如何向PHP服务器发送POST数据?
    Android如何向PHP服务器发送POST数据?
    在android apache httpclient(已弃用) httpclient httpclient = new defaulthttpclient(); httppost httppost = new httppost(“ http://www.yoursite.com/script.p...
    编程 发布于2025-04-05

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3