”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 使用 Scikit-learn 预测房价:完整指南

使用 Scikit-learn 预测房价:完整指南

发布于2024-11-02
浏览:948

Predicting House Prices with Scikit-learn: A Complete Guide

机器学习正在改变各个行业,包括房地产。一项常见的任务是根据卧室、浴室的数量、平方英尺和位置等各种特征来预测房价。在本文中,我们将探讨如何使用scikit-learn构建机器学习模型来预测房价,涵盖从数据预处理到模型部署的各个方面。

目录

  1. Scikit-learn 简介
  2. 问题定义
  3. 数据收集
  4. 数据预处理
  5. 特征选择
  6. 模型训练
  7. 模型评估
  8. 模型调优(超参数优化)
  9. 模型部署
  10. 结论

1.Scikit-learn简介

Scikit-learn 是 Python 中使用最广泛的机器学习库之一。它为数据分析和建模提供了简单高效的工具。无论您是处理分类、回归、聚类还是降维,scikit-learn 都提供了一组广泛的实用程序来帮助您构建强大的机器学习模型。

在本指南中,我们将使用 scikit-learn 构建回归模型来预测房价。让我们逐步了解该过程的每个步骤。


2. 问题定义

手头的任务是根据房屋的特征来预测其价格,例如:

  • 卧室数量
  • 浴室数量
  • 面积(平方英尺)
  • 地点

这是一个监督学习问题,其中目标变量(房价)是连续的,使其成为回归任务。 Scikit-learn 提供了多种回归算法,例如我们将在本项目中使用的线性回归随机森林


3. 数据收集

您可以使用真实世界的数据集(例如 Kaggle 房价数据集),也可以从公共 API 收集您自己的数据。

以下是您的数据的示例:

卧室 浴室 面积(平方英尺) 地点 价格 ($)
3 2 1500 波士顿 300,000
4 3 2000年 西雅图 500,000

这里的目标变量是价格.


4. 数据预处理

在将数据输入机器学习模型之前,我们需要对其进行预处理。这包括处理缺失值、编码分类特征以及缩放数据。

处理缺失数据

缺失数据在现实世界的数据集中很常见。我们可以使用中位数等统计度量来填充缺失值,也可以删除包含缺失数据的行:

data.fillna(data.median(), inplace=True)

编码分类特征

由于机器学习模型需要数字输入,因此我们需要将位置等分类特征转换为数字。 标签编码为每个类别分配一个唯一的编号:

from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
data['Location'] = encoder.fit_transform(data['Location'])

特征缩放

缩放面积和价格等特征以确保它们处于相同的比例非常重要,特别是对于对特征大小敏感的算法。以下是我们如何应用缩放:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

5. 特征选择

并非所有特征对目标变量的贡献均等。特征选择有助于识别最重要的特征,从而提高模型性能并减少过度拟合。

在这个项目中,我们使用SelectKBest根据与目标变量的相关性来选择前5个特征:

from sklearn.feature_selection import SelectKBest, f_regression
selector = SelectKBest(score_func=f_regression, k=5)
X_new = selector.fit_transform(X, y)

6. 模型训练

现在我们已经预处理了数据并选择了最佳特征,是时候训练模型了。我们将使用两种回归算法:线性回归随机森林

线性回归

线性回归拟合数据的直线,最小化预测值和实际值之间的差异:

from sklearn.linear_model import LinearRegression
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)

随机森林

随机森林是一种集成方法,它使用多个决策树并对它们的结果进行平均,以提高准确性并减少过度拟合:

from sklearn.ensemble import RandomForestRegressor
forest_model = RandomForestRegressor(n_estimators=100)
forest_model.fit(X_train, y_train)

训练-测试分离

为了评估我们的模型的泛化能力,我们将数据分为训练集和测试集:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=42)

7. 模型评估

训练模型后,我们需要使用 均方误差 (MSE)R 平方 (R²) 等指标来评估其性能。

均方误差 (MSE)

MSE 计算预测值和实际值之间的平均平方差。 MSE 越低表示性能越好:

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pred)

R 平方 (R²)

R² 告诉我们模型解释目标变量方差的程度。值为 1 表示完美预测:

from sklearn.metrics import r2_score
r2 = r2_score(y_test, y_pred)

使用这些指标比较线性回归和随机森林模型的性能。


8.模型调优(超参数优化)

为了进一步提高模型性能,我们可以对超参数进行微调。对于随机森林,像 n_estimators(树的数量)和 max_depth(树的最大深度)这样的超参数会显着影响性能。

以下是如何使用GridSearchCV进行超参数优化:

from sklearn.model_selection import GridSearchCV

param_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [None, 10, 20]
}

grid_search = GridSearchCV(RandomForestRegressor(), param_grid, cv=5)
grid_search.fit(X_train, y_train)

best_model = grid_search.best_estimator_

9. 模型部署

训练并调整模型后,下一步就是部署。您可以使用 Flask 创建一个提供预测服务的简单 Web 应用程序。

这是一个用于房价预测的基本 Flask 应用程序:

from flask import Flask, request, jsonify
import joblib

app = Flask(__name__)

# Load the trained model
model = joblib.load('best_model.pkl')

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    prediction = model.predict([data['features']])
    return jsonify({'predicted_price': prediction[0]})

if __name__ == '__main__':
    app.run()

使用joblib:
保存训练好的模型

import joblib
joblib.dump(best_model, 'best_model.pkl')

这样,您就可以通过向 API 发送请求来进行预测。


10. 结论

在这个项目中,我们探索了使用 scikit-learn 构建机器学习模型来预测房价的整个过程。从数据预处理、特征选择到模型训练、评估、部署,每一步都配有实用的代码示例。

无论您是机器学习新手还是希望在实际项目中应用 scikit-learn,本指南都提供了一个全面的工作流程,您可以根据它来适应各种回归任务。

随意尝试不同的模型、数据集和技术,以提高模型的性能和准确性。

回归 #AI #DataAnalysis #DataPreprocessing #MLModel #RandomForest #LinearRegression #Flask #APIDevelopment #RealEstate #TechBlog #Tutorial #DataEngineering #DeepLearning #PredictiveAnalytics #DevCommunity

版本声明 本文转载于:https://dev.to/amitchandra/predicting-house-prices-with-scikit-learn-a-complete-guide-2kd7?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何解决AppEngine中“无法猜测文件类型,使用application/octet-stream...”错误?
    如何解决AppEngine中“无法猜测文件类型,使用application/octet-stream...”错误?
    appEngine静态文件mime type override ,静态文件处理程序有时可以覆盖正确的mime类型,在错误消息中导致错误消息:“无法猜测mimeType for for file for file for [File]。 application/application/octet...
    编程 发布于2025-07-07
  • 如何为PostgreSQL中的每个唯一标识符有效地检索最后一行?
    如何为PostgreSQL中的每个唯一标识符有效地检索最后一行?
    postgresql:为每个唯一标识符在postgresql中提取最后一行,您可能需要遇到与数据集合中每个不同标识的信息相关的信息。考虑以下数据:[ 1 2014-02-01 kjkj 在数据集中的每个唯一ID中检索最后一行的信息,您可以在操作员上使用Postgres的有效效率: id dat...
    编程 发布于2025-07-07
  • Python读取CSV文件UnicodeDecodeError终极解决方法
    Python读取CSV文件UnicodeDecodeError终极解决方法
    在试图使用已内置的CSV模块读取Python中时,CSV文件中的Unicode Decode Decode Decode Decode decode Error读取,您可能会遇到错误的错误:无法解码字节 在位置2-3中:截断\ uxxxxxxxx逃脱当CSV文件包含特殊字符或Unicode的路径逃...
    编程 发布于2025-07-07
  • 在Pandas中如何将年份和季度列合并为一个周期列?
    在Pandas中如何将年份和季度列合并为一个周期列?
    pandas data frame thing commans date lay neal and pree pree'和pree pree pree”,季度 2000 q2 这个目标是通过组合“年度”和“季度”列来创建一个新列,以获取以下结果: [python中的concate...
    编程 发布于2025-07-07
  • `console.log`显示修改后对象值异常的原因
    `console.log`显示修改后对象值异常的原因
    foo = [{id:1},{id:2},{id:3},{id:4},{id:id:5},],]; console.log('foo1',foo,foo.length); foo.splice(2,1); console.log('foo2', foo, foo....
    编程 发布于2025-07-07
  • 如何在鼠标单击时编程选择DIV中的所有文本?
    如何在鼠标单击时编程选择DIV中的所有文本?
    在鼠标上选择div文本单击带有文本内容,用户如何使用单个鼠标单击单击div中的整个文本?这允许用户轻松拖放所选的文本或直接复制它。 在单个鼠标上单击的div元素中选择文本,您可以使用以下Javascript函数: function selecttext(canduterid){ if(do...
    编程 发布于2025-07-07
  • 使用jQuery如何有效修改":after"伪元素的CSS属性?
    使用jQuery如何有效修改":after"伪元素的CSS属性?
    在jquery中了解伪元素的限制:访问“ selector 尝试修改“:”选择器的CSS属性时,您可能会遇到困难。 This is because pseudo-elements are not part of the DOM (Document Object Model) and are th...
    编程 发布于2025-07-07
  • 如何将MySQL数据库添加到Visual Studio 2012中的数据源对话框中?
    如何将MySQL数据库添加到Visual Studio 2012中的数据源对话框中?
    在Visual Studio 2012 尽管已安装了MySQL Connector v.6.5.4,但无法将MySQL数据库添加到实体框架的“ DataSource对话框”中。为了解决这一问题,至关重要的是要了解MySQL连接器v.6.5.5及以后的6.6.x版本将提供MySQL的官方Visual...
    编程 发布于2025-07-07
  • 如何处理PHP文件系统功能中的UTF-8文件名?
    如何处理PHP文件系统功能中的UTF-8文件名?
    在PHP的Filesystem functions中处理UTF-8 FileNames 在使用PHP的MKDIR函数中含有UTF-8字符的文件很多flusf-8字符时,您可能会在Windows Explorer中遇到comploreer grounder grounder grounder gro...
    编程 发布于2025-07-07
  • PHP阵列键值异常:了解07和08的好奇情况
    PHP阵列键值异常:了解07和08的好奇情况
    PHP数组键值问题,使用07&08 在给定数月的数组中,键值07和08呈现令人困惑的行为时,就会出现一个不寻常的问题。运行print_r($月)返回意外结果:键“ 07”丢失,而键“ 08”分配给了9月的值。此问题源于PHP对领先零的解释。当一个数字带有0(例如07或08)的前缀时,PHP将其...
    编程 发布于2025-07-07
  • 为什么HTML无法打印页码及解决方案
    为什么HTML无法打印页码及解决方案
    无法在html页面上打印页码? @page规则在@Media内部和外部都无济于事。 HTML:Customization:@page { margin: 10%; @top-center { font-family: sans-serif; font-weight: bo...
    编程 发布于2025-07-07
  • 找到最大计数时,如何解决mySQL中的“组函数\”错误的“无效使用”?
    找到最大计数时,如何解决mySQL中的“组函数\”错误的“无效使用”?
    如何在mySQL中使用mySql 检索最大计数,您可能会遇到一个问题,您可能会在尝试使用以下命令:理解错误正确找到由名称列分组的值的最大计数,请使用以下修改后的查询: 计数(*)为c 来自EMP1 按名称组 c desc订购 限制1 查询说明 select语句提取名称列和每个名称...
    编程 发布于2025-07-07
  • 我可以将加密从McRypt迁移到OpenSSL,并使用OpenSSL迁移MCRYPT加密数据?
    我可以将加密从McRypt迁移到OpenSSL,并使用OpenSSL迁移MCRYPT加密数据?
    将我的加密库从mcrypt升级到openssl 问题:是否可以将我的加密库从McRypt升级到OpenSSL?如果是这样,如何?答案:是的,可以将您的Encryption库从McRypt升级到OpenSSL。可以使用openssl。附加说明: [openssl_decrypt()函数要求iv参...
    编程 发布于2025-07-07
  • 图片在Chrome中为何仍有边框?`border: none;`无效解决方案
    图片在Chrome中为何仍有边框?`border: none;`无效解决方案
    在chrome 在使用Chrome and IE9中的图像时遇到的一个频繁的问题是围绕图像的持续薄薄边框,尽管指定了图像,尽管指定了;和“边境:无;”在CSS中。要解决此问题,请考虑以下方法: Chrome具有忽略“ border:none; none;”的已知错误,风格。要解决此问题,请使用以下...
    编程 发布于2025-07-07
  • 为什么我会收到MySQL错误#1089:错误的前缀密钥?
    为什么我会收到MySQL错误#1089:错误的前缀密钥?
    mySQL错误#1089:错误的前缀键错误descript [#1089-不正确的前缀键在尝试在表中创建一个prefix键时会出现。前缀键旨在索引字符串列的特定前缀长度长度,以便更快地搜索这些前缀。理解prefix keys `这将在整个Movie_ID列上创建标准主键。主密钥对于唯一识别...
    编程 发布于2025-07-07

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3