”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 优化性能:为数据透视表选择最佳数据源

优化性能:为数据透视表选择最佳数据源

发布于2024-11-08
浏览:884

Optimize Performance: Choose the Best Data Source for Pivot Table

TL;DR: Syncfusion Pivot Table connects to multiple data sources, making it a versatile tool for data analysis. Selecting the right data source is crucial for performance. This guide explores different options and offers tips on choosing the best one.

Syncfusion Pivot Table is a powerful tool for data analysis and visualization. One of its standout features is the ability to connect to various data sources, making it a versatile choice for businesses and developers. Choosing the right data source for your Pivot Table is crucial for ensuring optimal performance and usability.

Let’s explore the different data sources you can connect to Syncfusion Pivot Table, their benefits, and how to choose the one that best suits your needs.

Understanding Syncfusion Pivot Table

Before diving into data sources, it’s essential to understand what the Syncfusion Pivot Table is and how it works. The Syncfusion Pivot Table is a component for ASP.NET MVC, ASP.NET Core, TypeScript, JavaScript, Angular, React, Vue, and Blazor platforms. It allows you to create interactive tables for data analysis, offering features like data filtering, sorting, grouping, and aggregation.

Factors to consider when choosing a data source for Pivot Table

Let’s see some of the significant factors that need to be considered when choosing a data source for our Pivot Table:

Data volume and complexity

The size of your data can affect performance. Large datasets might require more powerful databases or optimized storage solutions. For example, JSON or CSV files might be sufficient for small to medium datasets. For larger datasets, consider using Relational and NoSQL databases or OLAP systems. OLAP systems provide the necessary capabilities for complex data analysis and multi-dimensional data. For more straightforward analysis, JSON or CSV files can be practical.

Performance requirements

Consider the performance requirements of your app. Databases generally offer better performance for large-scale data operations compared to file-based data sources. However, JSON and CSV files might suffice for quick and straightforward analysis.

Ease of integration

Evaluate how easily the data source can be integrated with Syncfusion Pivot Table. Relational databases and JSON/XML files typically have well-established integration methods, while some NoSQL databases and RESTful APIs might require additional configuration.

Real-time data access

If your app requires real-time data access, use RESTful APIs or databases with real-time capabilities. File-based data sources like Excel and CSV are static and require manual updates.

Security and compliance

Ensure your chosen data source complies with your organization’s security and privacy requirements. Databases often provide robust security features, whereas file-based data sources might require additional measures to secure sensitive information.

Best practices for choosing a data source for Pivot Table

Let’s see some of the best practices for choosing a data source for a Pivot Table:

Evaluate your use case

Understand your app’s specific needs and choose a data source that aligns with those needs. Consider the data type, required operations, and user expectations. Consider NoSQL databases for web apps that require high availability and scalability. Relational databases like SQL Servers are a good choice for traditional business apps that use structured data.

Test performance and scalability

Conduct performance testing to ensure the chosen data source can handle the expected load. Also, consider future scalability needs and choose a solution that can grow with your app.

Ensure data quality

Data quality is paramount for accurate analysis. Choose data sources that allow you to maintain high data quality standards, including validation and error checking.

Plan for data integration

Develop a clear plan for integrating your data source with Syncfusion Pivot Table. Consider using middleware or ETL (Extract, Transform, Load) tools to streamline the integration process. JSON and CSV data are convenient for quick setups and ease of use. Relational databases and OLAP systems require more setup and maintenance but offer greater capabilities.

How does the Syncfusion Pivot Table work with different data sources?

The flexible and robust data binding capabilities facilitate Syncfusion Pivot Table’s ability to work with various data sources. It supports multiple data sources, including:

  • JSON data: Ideal for small to medium datasets, JSON is lightweight and easy to work with.
  • OLAP (Online Analytical Processing): Suitable for large datasets and complex data analysis.
  • Relational databases: SQL databases like MySQL, SQL Server, and PostgreSQL provide robust data storage and querying capabilities.
  • NoSQL databases: NoSQL databases like MongoDB provide a flexible schema design for unstructured data.
  • Web Services: Web Services, such as RESTful APIs and OData services, are helpful for real-time data integration and dynamic updates.
  • CSV files: Simple for smaller datasets and quick setups.

JSON data

JSON (JavaScript Object Notation) is a lightweight data interchange format. Syncfusion Pivot Table can easily consume JSON data, which is particularly useful for web apps where data is often fetched in JSON format from APIs.

Advantages

  • Ease of use: JSON is easy to read, write, and parse, making it a popular choice for web apps.
  • Flexibility: JSON can handle various data structures, including nested objects and arrays.

  • Lightweight: JSON is compact, reducing the data transmitted over the network.

Considerations

  • Performance: Handling large datasets in JSON can be inefficient and slow.

  • Limited Scalability: JSON is not ideal for large or complex datasets.

When to use

  • Small to medium datasets.
  • Apps where ease of use and quick setup are priorities.

  • Prototyping and testing.

Here is a code example for integrating JSON data with our Pivot Table.

Binding JSON data via local

var localData = [
    { Product: 'Bike', Country: 'USA', Sales: 100 },
    { Product: 'Car', Country: 'Canada', Sales: 200 }
];

var pivotTableObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
        dataSource: localData,
        rows: [{ name: 'Product' }],
        columns: [{ name: 'Country' }],
        values: [{ name: 'Sales' }],
        filters: []
    }
});
pivotTableObj.appendTo('#PivotTable');

Binding JSON data via remote (external) link

var pivotGridObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
        url: 'https://cdn.syncfusion.com/data/sales-analysis.json',
        expandAll: false,
        rows: [
            { name: 'EnerType', caption: 'Energy Type' }
        ],
        columns: [
            { name: 'EneSource', caption: 'Energy Source' }
        ],
        values: [
            { name: 'PowUnits', caption: 'Units (GWh)' },
            { name: 'ProCost', caption: 'Cost (MM)' }
        ],
        filters: []
    }
});
pivotGridObj.appendTo('#PivotTable');

CSV files

Comma-separated values (CSV) files are a standard format for exporting and importing data. Syncfusion Pivot Table can parse CSV files and use them as a data source, making it convenient to analyze data from spreadsheets or other tabular data sources.

Advantages

  • Simplicity: Easy to create, read, and manipulate.
  • Portability: CSV files are widely supported and easily shareable.
  • Quick setup: Ideal for quick setups and small datasets.

Considerations

  • Performance: Not suitable for large datasets or complex queries.
  • Limited functionality: Lacks advanced features and data types.

When to use

  • Small datasets for quick analysis or prototyping.
  • Data migration or import/export scenarios.
  • Simple apps with minimal data manipulation needs.

Here is a code example for integrating CSV data with Pivot Table.

Binding CSV data via local

var csvdata =
  'Region,Country,Item Type,Sales Channel,Total Revenue,Total Cost,Total Profit\r\nMiddle East and North Africa,Libya,Cosmetics,Offline,3692591.20,2224085.18,1468506.02\r\nNorth America,Canada,Vegetables,Online,464953.08,274426.74,190526.34\r\nMiddle East and North Africa,Libya,Baby Food,Offline,387259.76,241840.14,145419.62\r\nAsia,Japan,Cereal,Offline,683335.40,389039.42,294295.98';
var pivotObj = new ej.pivotview.PivotView({
  dataSourceSettings: {
    dataSource: getCSVData(),
    type: 'CSV',
    expandAll: false,
    formatSettings: [
      { name: 'Total Cost', format: 'C0' },
      { name: 'Total Revenue', format: 'C0' },
      { name: 'Total Profit', format: 'C0' },
    ],
    drilledMembers: [{ name: 'Item Type', items: ['Baby Food'] }],
    rows: [{ name: 'Country' }, { name: 'Region' }],
    columns: [{ name: 'Sales Channel' }, { name: 'Item Type' }],
    values: [
      { name: 'Total Profit' },
      { name: 'Total Cost' },
      { name: 'Total Revenue' },
    ],
    filters: [],
  },
  height: 290,
  width: '100%',
});
pivotObj.appendTo('#PivotTable');
function getCSVData() {
  var dataSource = [];
  var jsonObject = csvdata.split(/\r?\n|\r/);
  for (var i = 0; i 



Binding CSV data via remote (external) link

var pivotObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
        url: 'https://bi.syncfusion.com/productservice/api/sales',
        type: 'CSV',
        expandAll: false,
        enableSorting: true,
        formatSettings: [{ name: 'Total Cost', format: 'C0' }, { name: 'Total Revenue', format: 'C0' }, { name: 'Total Profit', format: 'C0' }],
        drilledMembers: [{ name: 'Item Type', items: ['Baby Food'] }],
        rows: [
            { name: 'Region' },
            { name: 'Country' }
        ],
        columns: [
            { name: 'Item Type' },
            { name: 'Sales Channel' }
        ],
        values: [
            { name: 'Total Cost' },
            { name: 'Total Revenue' },
            { name: 'Total Profit' }
        ],
        filters: []
    },
    height: 300,
    width: '100%'
});
pivotObj.appendTo('#PivotTable');

OLAP (Online Analytical Processing) data

OLAP cubes allow for complex data analysis and are commonly used in business intelligence apps. Syncfusion Pivot Table supports OLAP data sources, enabling multi-dimensional data analysis with rich, hierarchical data structures. OLAP data sources often provide faster query responses due to pre-aggregated data.

Advantages

  • Performance: OLAP is designed for fast querying and data analysis, even with large datasets.
  • Complex analysis: Supports complex calculations, aggregations, and multi-dimensional data analysis.
  • Scalability: OLAP systems can handle massive datasets with ease.

Considerations

  • Complexity: Setting up and maintaining an OLAP system can be complex and require specialized knowledge.
  • Cost: OLAP solutions can be expensive to implement and maintain.

When to use

  • Large datasets with complex analysis requirements.
  • Business intelligence and data warehousing apps.
  • Scenarios requiring high performance and scalability.

Here is a code example for integrating the OLAP data with the Pivot Table.

var pivotTableObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
            catalog: 'Adventure Works DW 2008 SE',
            cube: 'Adventure Works',
            providerType: 'SSAS',
            enableSorting: true,
            url: 'https://bi.syncfusion.com/olap/msmdpump.dll',
            localeIdentifier: 1033,
            rows: [{ name: '[Customer].[Customer Geography]'],
            columns: [{ name: '[Product].[Product Categories]'},
                { name: '[Measures]'}],
            values: [{ name: '[Measures].[Customer Count]'},
                { name: '[Measures].[Internet Sales Amount]']
    }
});
pivotTableObj.appendTo('#PivotTable');

Relational databases

Relational databases are one of the most common data sources for our Pivot Table. They store data in tables, making it easy to retrieve and manipulate data using SQL queries. Popular relational databases include MySQL, PostgreSQL, SQL Server, and Oracle.

Advantages

  • Structured data: Data is organized in a tabular format, ideal for Pivot Tables.
  • Scalability: Suitable for handling large volumes of data.
  • ACID compliance: Ensures data integrity and consistency.

Considerations

  • Complexity: Requires knowledge of SQL for data retrieval.
  • Performance: This may require optimization for large datasets.

When to use

  • Medium to large datasets.
  • Apps requiring robust data storage and complex queries.
  • Scenarios where data integrity and relationships are essential.

NoSQL databases

NoSQL databases such as MongoDB offer a flexible schema and are designed to handle unstructured data, making them a good choice for certain types of data analysis.

Advantages

  • Flexibility: Schema-less design allows for easy modification of data structures.
  • Scalability: Excellent for handling large-scale, distributed data.

Considerations

  • Query complexity: Can be more complex to query than relational databases.
  • Consistency: May sacrifice consistency for availability and partition tolerance (CAP theorem).
  • Connectivity: We may require specific connectors or APIs for integration.

Web Services or remote data

Data can be fetched from remote servers using web services or APIs. Syncfusion Pivot Table can connect to remote data sources via RESTful services, making it ideal for apps that analyze data from various endpoints. It involves retrieving data from remote servers or databases.

Advantages

  • Real-time data: Enables real-time data integration and dynamic updates.
  • Scalability: Can handle large and distributed datasets.
  • Flexibility: Easily integrate with various services and APIs.

Considerations

  • Complexity: Requires developing and maintaining RESTful APIs.
  • Latency: Network latency can impact performance.

When to use

  • Apps needing real-time data updates.
  • Integrating data from multiple sources or external APIs.
  • Scenarios requiring high flexibility and scalability.

Here’s a code example for connecting an API service to our Pivot Table.

var data = new ej.data.DataManager({
    url: 'https://bi.syncfusion.com/northwindservice/api/orders',
    adaptor: new ej.data.WebApiAdaptor(),
    crossDomain: true,
  });
  data.defaultQuery = new ej.data.Query().take(8);

  var pivotTableObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
      dataSource: data,
      expandAll: true,
      filters: [],
      columns: [{ name: 'ProductName' }],
      rows: [{ name: 'ShipCountry' }, { name: 'ShipCity' }],
      formatSettings: [{ name: 'UnitPrice', format: 'C0' }],
      values: [{ name: 'Quantity' }, { name: 'UnitPrice' }],
    },
    height: 350,
    width: '100%',
    gridSettings: { columnWidth: 120 },
  });
  pivotTableObj.appendTo('#PivotTable');

References

For more details, refer to the following references:

  • Connecting to PostgreSQL in Pivot Table
  • Connecting to Microsoft SQL Server in Pivot Table
  • Connecting to Oracle in Pivot Table
  • Connecting to Elasticsearch in Pivot Table
  • Connecting to Snowflake in Pivot Table
  • Server-Side Pivot Engine in Pivot Table

Conclusion

Thanks for reading! In this blog, we’ve explored the various options, benefits, and best practices for choosing the right data source for the Syncfusion Pivot Table, ensuring optimal performance and usability.

If you’re already a Syncfusion user, the latest version of Essential Studio is available on the License and Downloads page. We offer our new users a 30-day free trial to explore all our components’ features and capabilities.

If you need further assistance, contact us via our support forum, support portal, or feedback portal. We’re always here to help you!

Related blogs

  • Easily Group Data into Ranges in Web Applications Using Pivot Table
  • Optimize Memory Management in JavaScript Pivot Table: Best Practices and Tips
  • Easily Perform CRUD Actions in Blazor Pivot Table with SQL Database & Entity Framework
  • Efficient Report Management: Save and Load Reports in Vue Pivot Table with SQL Server and Node.js Express Server
版本声明 本文转载于:https://dev.to/syncfusion/optimize-performance-choose-the-best-data-source-for-pivot-table-3l0e?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 是什么导致 Google Chrome 的 Console.log() 中数组和对象的行为不一致?
    是什么导致 Google Chrome 的 Console.log() 中数组和对象的行为不一致?
    Google Chrome 的 console.log() 表现出数组和对象不一致的行为了解问题在 Google Chrome 中调试代码时,观察到 console.log() 在处理嵌套数组时表现得很奇怪。记录数组时,在记录后修改其内部值会导致记录的输出反映更新后的值而不是记录时的值。 Firef...
    编程 发布于2024-11-08
  • 在 PHP 中按对象字段对对象数组进行排序
    在 PHP 中按对象字段对对象数组进行排序
    在 PHP 中,有多种方法可以按对象字段对对象数组进行排序。以下是一些常见的方法: 将 usort() 函数与自定义比较函数结合使用 实现自定义排序算法 利用 array_multisort() 函数 将 usort() 函数与自定义比较函数结合使用 以下是在 PHP 中使用 us...
    编程 发布于2024-11-08
  • 注意 Java 中的类型转换
    注意 Java 中的类型转换
    Java是强类型语言,但仍然可以在不同类型的原始变量之间传递值。例如,我可以将 int 的值分配给 double ,没有任何问题,只要接收该值的类型的存储容量可以处理它。 参见下面每个原始类型的大小: 将值转移到具有更大存储容量的类型有一个技术名称:“扩大转换”。该术语在葡萄牙语中通常被翻译为“放...
    编程 发布于2024-11-08
  • 如何在 React 中构建天气应用
    如何在 React 中构建天气应用
    If you want to master crucial web development skills like working with API's, fetching data, and asynchronous functions such as async and await in Rea...
    编程 发布于2024-11-08
  • Go 和 Python 之间的 gRPC 通信
    Go 和 Python 之间的 gRPC 通信
    gRPC 是一个功能强大、高性能的远程过程调用 (RPC) 框架,尽管不如 REST 常用,但在某些场景中提供了显着的优势。 此外,它与语言无关,可以在任何环境中运行,使其成为服务器到服务器通信的理想选择。 我不会深入研究它的完整解释,但这里是 gRPC 的一般链接。我将提供实践教程 ...
    编程 发布于2024-11-08
  • CSS 定位中的position:sticky 和position:fixed 有何不同?
    CSS 定位中的position:sticky 和position:fixed 有何不同?
    浏览 CSS 定位的细微差别:揭开position:sticky 和position:fixed理解 CSS 定位的复杂性可能具有挑战性,尤其是对于 CSS 新手。经常出现的一个特殊困境是position:sticky 和position:fixed 之间的区别。本文深入探讨了显着差异,为那些寻求更...
    编程 发布于2024-11-08
  • 如何使用 JavaScript 将大字符串拆分为 N 大小的块?
    如何使用 JavaScript 将大字符串拆分为 N 大小的块?
    在 JavaScript 中将大字符串拆分为 N 大小的块要有效地将大字符串拆分为大小为 N 的较小块,您可以使用JavaScript 中的 String.prototype.match 方法。此方法使您能够将正则表达式模式应用于字符串并提取匹配的子字符串。使用 String.prototype.m...
    编程 发布于2024-11-08
  • 如何在 C++ 中不使用 getline() 将文件字节读入字符数组?
    如何在 C++ 中不使用 getline() 将文件字节读入字符数组?
    How to Retrieve File bytes into a Char Array in C 要在不使用 getline() 的情况下将文件字节读入 char 数组,请考虑使用 ifstream::read()。请按照下列步骤操作:打开文件:std::ifstream infile("...
    编程 发布于2024-11-08
  • 以下是一些符合条件的标题选项:

**选项 1(关注问题):**

* **如何在 Python 中创建真正不可变的对象:超越基础**

**选项 2(突出显示解决方案)
    以下是一些符合条件的标题选项: **选项 1(关注问题):** * **如何在 Python 中创建真正不可变的对象:超越基础** **选项 2(突出显示解决方案)
    Python 中的不可变对象:超越基本解决方案虽然标准元组类提供了不可变性,但本文探讨了创建不可变对象的更高级技术重写 __setattr__:一种有限的方法一个常见的解决方案是重写 setattr 方法。但是,即使在 init 函数中,这也会阻止属性设置。因此,它可能并不适合所有场景。子类化元组:...
    编程 发布于2024-11-08
  • Spring Boot:如何解决跨源问题
    Spring Boot:如何解决跨源问题
    跨源问题描述 您可能会遇到以下错误消息: 被 CORS 策略阻止:请求的资源上不存在“Access-Control-Allow-Origin”标头 此错误表示对某个地址的请求已被 CORS 协议阻止,因为资源中缺少 Access-Control-Allow-Origin 标头。 ...
    编程 发布于2024-11-08
  • 处理日期和时区转换:为什么正确的 UTC 转换很重要
    处理日期和时区转换:为什么正确的 UTC 转换很重要
    在检索选定日期范围内的数据时,我们注意到我们的计算存在一定偏差。然而,当我们将日期减少一天时,数据完全匹配! 嗯……我们的代码中处理日期的方式可能存在问题。也许时区处理不正确——是的,我是对的! 当构建涉及来自不同时区的用户的应用程序时,正确处理日期可能很棘手。在 UTC 中存储日期是确保一致性的...
    编程 发布于2024-11-08
  • gRPC:你住在哪里?你吃什么?
    gRPC:你住在哪里?你吃什么?
    A primeira vez que ouvi falar sobre RPC foi em uma aula de sistema distribuídos, ainda quando estava cursando a graduação em Ciência da Computação. Ac...
    编程 发布于2024-11-08
  • 如何为 3D 模型实现平滑的切线空间法线?
    如何为 3D 模型实现平滑的切线空间法线?
    如何实现平滑的切线空间法线修复由于切线、副法线的每面计算而导致的模型的多面外观,和法线向量,必须考虑模型预先提供的法线。每顶点法线平均第一种方法涉及计算每面法线和将其分布在形成面的顶点之间。每个顶点维护一个初始值为零的累加器向量,并且将面法线的 X、Y 和 Z 分量添加到每个涉及顶点的累加器中。此外...
    编程 发布于2024-11-08
  • 通过简单示例了解 JavaScript 中的调用、应用和绑定
    通过简单示例了解 JavaScript 中的调用、应用和绑定
    通过简单示例了解 JavaScript 中的调用、应用和绑定 使用 JavaScript 时,您可能会遇到三种强大的方法:调用、应用和绑定。这些方法用于控制函数中 this 的值,从而更轻松地处理对象。让我们通过简单的示例来分解每种方法,以了解它们的工作原理。 1....
    编程 发布于2024-11-08
  • 大括号放置对 JavaScript 执行有什么影响?
    大括号放置对 JavaScript 执行有什么影响?
    大括号放置和 JavaScript 执行在 JavaScript 中,大括号的放置可以显着改变代码的行为和输出。如提供的代码片段所示,大括号位置的单个更改可能会导致截然不同的结果。自动分号插入和未定义返回当左大括号时被放置在一个新行上,如第一个代码片段中一样,自动分号插入开始。这是 JavaScri...
    编程 发布于2024-11-08

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3