”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 与 Jira 和 LLM 的互动项目报告

与 Jira 和 LLM 的互动项目报告

发布于2024-11-08
浏览:978

Interactive project report with Jira and LLM

For all projects I worked on, I used some sort of project management system where project scope was defined as a list of tasks (tickets), and progress was reported by changing task statuses.

While such project management systems offer various dashboards and reports, interpreting a long list of tasks with cryptic titles created by engineers is not trivial. To provide transparency for project sponsors and customers, I had to manually create a project report and then answer related questions.

What if instead we asked LLM for help? The idea is simple: fetch all project tasks and feed them to LLM asking for the report. Then start a chat allowing for further questions.

Collecting data

We will use Jira for this experiment as it's a popular tool with easy-to-use REST API. The example project, for which we'll create the report, is very technical - it's about creating a build script that can detect what the code uses and generate the required instructions for the build system. Such a project will surely have technical tasks with cryptic titles.

Let's start with fetching tasks. The project in the example setup is represented as a single parent ticket (an epic) with a list of child tickets (tasks). For each task, we will fetch the full history to see how the ticket status changes over time. Using Python's Jira client the implementation is simple. Note in Jira nomenclature the term issue is used instead of ticket which is reflected in the code.

jira = JIRA(server=os.environ["JIRA_SERVER"], basic_auth=(os.environ["JIRA_USER"], os.environ["JIRA_TOKEN"]))

def fetch_issues(epic_key):
    issues = []
    print("Loading epic data...", end="", flush=True)
    issues.append(jira.issue(epic_key))
    print("done")

    print("Loading tasks...", end="", flush=True)
    child_issues = jira.search_issues(f"parent = {epic_key}")
    for issue in child_issues:
        issues.append(jira.issue(issue.key, expand="changelog"))
    print("done")

    return issues

Since fetching all tickets with history takes a while, it is handy to store this data locally for further experiments. While playing with the implementation I used the below functions to save tasks to, and load them from a file:

def save_issues(filename, issues):  
    with open(filename, "x") as file:
        file.write("[")
        file.write(",".join(
            json.dumps(issue.raw) for issue in issues))
        file.write("]")

def load_issues(filename):
    with open(filename, "r") as file:
        data = json.load(file)
        return [Issue(jira._options, jira._session, raw=raw_issue)
            for raw_issue in data]

Preparing data

The next step is to prepare data for LLM. Raw Jira data in JSON format is quite verbose, we don't need all these extra fields. Let's extract basic information: subject, description, type, status, and creation date. From history, we will only extract ticket status changes along with their date and author, ignoring changes to other fields.

All this information will be stored as plain text. I have seen people using JSON or XML as LLM input, but my observation is LLMs are very good at interpreting plain text data. Plus with this approach, I don't need to worry about formatting text fields to be JSON or XML compatible. The only processing I do is to strip empty lines from the description, and the primary reason is to make it easier for me to look at results.

def strip_empty_lines(s):
    return "".join(line for line in (s or "").splitlines() if line.strip())

def issue_to_str(issue):
    return f"""
{issue.fields.issuetype}: {issue.key}
Summary: {issue.fields.summary}
Description: {strip_empty_lines(issue.fields.description)}
Type: {issue.fields.issuetype}
Status: {issue.fields.status}
Created: {issue.fields.created}
Priority: {issue.fields.priority}
"""

def changelog_to_str(changelog, changeitem):
    return f"""
Author: {changelog.author.displayName}
Date: {changelog.created}
Status change from: {changeitem.fromString} to: {changeitem.toString}
"""


def history_to_str(issue):
    if issue.changelog is None or issue.changelog.total == 0:
        return ""
    history_description = ""
    for changelog in issue.changelog.histories:
        try:
            statuschange = next(filter(lambda i: i.field == "status", changelog.items))
            history_description  = changelog_to_str(changelog, statuschange)
        except StopIteration:
            pass
    return history_description

#this function assumes the first issue is an epic followed by tasks.
def describe_issues(issues):
    description = "Project details:"
    description  = issue_to_str(issues[0])
    description  = "\nProject tasks:"
    for issue in issues[1:]:
        description  = "\n"   issue_to_str(issue)
        description  = f"History of changes for task {issue.key}:"
        description  = history_to_str(issue)
    return description

The epic I use for this experiment has 30 tasks that have between 1 and 15 status changes in their history. I will not quote the full output of the describe_issues function, but to give you an idea of how it looks here is a short excerpt:

Project details:
Epic: TKT-642
Summary: Create universal build script
Description: 
Type: Epic
Status: In Development
Created: 2024-05-24T10:48:33.050 0200
Priority: P4 - Low

Project tasks:

Task: TKT-805
Summary: add test reporting for e2e tests
Description: 
Type: Task
Status: In Progress
Created: 2024-09-06T09:56:33.919 0200
Priority: P4 - Low
History of changes for task TKT-805:
Author: Jane Doe
Date: 2024-09-06T10:04:15.325 0200
Status change from: To Do to: In Progress

Task: TKT-801
Summary: Sonar detection
Description: * add sonar config file detection *
Type: Task
Status: In Progress
Created: 2024-08-30T13:57:44.364 0200
Priority: P4 - Low
History of changes for task TKT-801:
Author: Jane Doe
Date: 2024-08-30T13:57:58.450 0200
Status change from: To Do to: In Progress

Task: TKT-799
Summary: Add check_tests step
Description: 
Type: Task
Status: Review
Created: 2024-08-29T18:33:52.268 0200
Priority: P4 - Low
History of changes for task TKT-799:
Author: Jane Doe
Date: 2024-08-29T18:40:35.305 0200
Status change from: In Progress to: Review
Author: Jane Doe
Date: 2024-08-29T18:33:57.095 0200
Status change from: To Do to: In Progress

Prompting

The prompt we'll use consists of two parts. First, it gives an instruction to create a report, detailing what specific information we want in the report. Then we insert ticket information prepared in previous paragraphs. LLMs tend to give verbose responses, so we ask specifically to not add any additional explanation. As the experiment is performed in the terminal, we'll also ask to make the response terminal-freindly.

def create_prompt(isses_description):
    return f"""
    Using below information from jira generate executive report that focuses on what was done and what is remaining.
    Provide project progress information. Point out problematic tasks and what may be wrong.
    Use status change history to point out tasks that were worked on for too long or have been reopened many times. 
    Check if you can detect other problems from tasks or their history.
    Provide only text content that can be displayed on terminal, without any additional explanation or markdown.
    {isses_description}
    """

The LLM I use for this experiment is Anthropic's Claude 3.5 Sonnet. In addition to sending the prompt message, we'll also specify identity. Identity could be just added as another line at the beginning of the prompt, but since the plan is to follow up with questions (create an interactive chat), Claude's documentation recommends setting identity as a separate system parameter in such a scenario.

def send_messages(messages):
    client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_KEY"])
    identity = "You are a seasoned IT program manager. You have very good communication skills, your answers are concise and focus on key insights."
    message = client.messages.create(
        system=identity,
        max_tokens=2048,
        messages=messages,
        model="claude-3-5-sonnet-20240620"
    )
    return message.content[0].text

def generate_report(prompt):
    messages=[
        {
            "role": "user",
            "content": prompt 
        }]
    return send_messages(messages)

Let's put this together and run:

if __name__=="__main__":
    issues = fetch_issues('TKT-642')
    descrption = describe_issues(issues)
    prompt = create_prompt(description)
    report = generate_report(prompt)
    print(report)

Below is the full report I received from Claude:

Executive Report: Universal Build Script Project (TKT-642)

Project Progress:

  • 11 out of 24 tasks are completed (45.8%)
  • 5 tasks are in progress or review (20.8%)
  • 8 tasks remain to be started (33.3%)

Key Accomplishments:

  1. Created prototype jinja template for builder
  2. Implemented config extension and validation
  3. Added unit tests execution step
  4. Integrated support for sonar scanning
  5. Created image for building config and tech scripts

In Progress:

  • Adding test reporting for e2e tests
  • Implementing filtering logic for environments and Sonar detection
  • Developing developer documentation

Problematic Areas:

  1. Task TKT-734 (Add config extension) went through multiple status changes, indicating potential issues or complexity.
  2. Task TKT-697 (Add support for sonar scanning) has been reopened multiple times, suggesting implementation challenges.
  3. Task TKT-715 (Create developer documentation) has been in progress for an extended period without completion.

Upcoming Work:

  • Integration of the build system into various services (authentication, database-api, shopping-cart, reporting, localization)
  • Adding support for monorepos and custom jobs
  • Creating user documentation

Recommendations:

  1. Review the implementation of config extension and sonar scanning to address recurring issues.
  2. Prioritize the completion of developer documentation to support team adoption.
  3. Begin planning for the integration of the build system into remaining services.
  4. Consider reassessing the priority of tasks that have remained in the "To Do" state for an extended period.

Overall, the project is making steady progress, with nearly half of the tasks completed. However, attention should be given to resolving recurring issues and completing in-progress tasks to maintain momentum.

The result is quite good. It did miscount tickets - in various runs I did it gave me a different number, but never a correct number of 30. Well, LLMs are known for not being able to count r's in the word strawberry. But the summary is correct, recommendations are also reasonable.

Asking questions

Now let's create an interactive session and ask some questions. We'll start with a pre-defined question which is the original prompt we used to generate the report. Then we will read the user's input and attach it to messages. Each response, along with the report is also recorded in the messages chain.

def interactive_session(prompt):
    messages = []
    user_input = prompt
    while user_input != "exit":
        messages.append({
            "role" : "user",
            "content" : user_input
        })
        response = send_messages(messages)
        print(response)
        messages.append({
            "role" : "assistant",
            "content" : response
        })
        user_input = input("QUESTION: ")
    return messages

To run this, just replace generate_report in the main section of the script with interactive_session. Below is a recording of an example session I did. I omitted from the quote the first response which just prints out the report.

QUESTION: how many engineers the team counts?

Based on the information provided in the task histories, I can identify at least three distinct engineers working on this project:

  1. John Smith
  2. Jane Doe
  3. Mike Carpenter

These three names appear frequently in the status change histories for various tasks. However, it's important to note that this may not represent the full team size. There could be other team members who haven't made changes recorded in these specific task histories, or who are involved in the project in other capacities not reflected in this data.

To get an accurate count of the team size, you would need additional information beyond what's provided in these task histories.

QUESTION: is unit test execution task done yet?

Yes, the unit test execution task is completed. Specifically, task TKT-700 with the summary "Add unit tests execution step" is marked as Done. Here's the relevant information:

Task: TKT-700
Summary: Add unit tests execution step
Status: Done

The history of changes for this task shows that it was moved to "Done" status on 2024-08-02, after going through the typical workflow stages (To Do -> In Progress -> Review -> PREPROD VERIFICATION -> READY FOR PRODUCTION -> Done).

QUESTION: does the scope include running some sort of static code analysis tool?

Yes, the project scope includes running static code analysis. Specifically, there's a task for implementing Sonar scanning, which is a popular static code analysis tool. Here are the details:

Task: TKT-697
Summary: Add support for sonar scanning
Status: Done

This task was completed and moved to "Done" status on 2024-09-02. The implementation of Sonar scanning indicates that static code analysis is part of the universal build script project.

Additionally, there's another related task that's currently in progress:

Task: TKT-801
Summary: Sonar detection
Status: In Progress

This task mentions "sonar detection" in its summary, which further confirms that Sonar (a static analysis tool) is being integrated into the build process.

These tasks demonstrate that static code analysis, particularly using Sonar, is included in the project scope and has been largely implemented.

QUESTION: what are the 3 biggest risks of the project?

Based on the provided information, the three biggest risks for this project appear to be:

  1. Integration Delays:
    Several tasks for integrating the build system into various services (localization, reporting, shopping cart, authentication, database API) are still in "To Do" status. This poses a risk of delays in widespread adoption of the universal build script across different services. Failure to integrate across all intended services could limit the project's overall impact and value.

  2. Documentation Lag:
    The task for creating developer documentation (TKT-715) has only recently moved to "In Progress" after being in "To Do" for an extended period. Additionally, the user documentation task (TKT-714) is still in "To Do" status. This lag in documentation creation risks hindering the adoption, proper use, and maintenance of the new build system. It could lead to misuse, inefficiencies, or resistance to adoption due to lack of clear guidance.

  3. Complexity in Implementation:
    Several tasks, particularly those related to Sonar scanning (TKT-697) and config extension (TKT-734), have shown multiple status changes between "In Progress" and "Review". This pattern suggests potential technical challenges or uncertainties in implementation. There's a risk that these complexities could lead to bugs, performance issues, or maintenance difficulties in the future if not properly resolved.

These risks could potentially impact the project's timeline, adoption rate, and overall success if not properly managed and mitigated.

That was surprisingly good. I do like the fact the LLM is using generic knowledge in addition to prompt data, so it was able to answer questions about the "static code analysis tool" even though no ticket data mentions those terms. The answers are a bit too verbose, more experiments with the prompt are required - probably appending instructions to each user's query would help shape better answers.
Issues such as miscounting tickets should be easy to solve, we can calculate base statistics and include them in the prompt itself.

版本声明 本文转载于:https://dev.to/michal1024/interactive-project-report-with-jira-and-llm-jfa?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 为什么使用固定定位时,为什么具有100%网格板柱的网格超越身体?
    为什么使用固定定位时,为什么具有100%网格板柱的网格超越身体?
    网格超过身体,用100%grid-template-columns 为什么在grid-template-colms中具有100%的显示器,当位置设置为设置的位置时,grid-template-colly修复了?问题: 考虑以下CSS和html: class =“ snippet-code”> g...
    编程 发布于2025-04-18
  • 如何简化PHP中的JSON解析以获取多维阵列?
    如何简化PHP中的JSON解析以获取多维阵列?
    php 试图在PHP中解析JSON数据的JSON可能具有挑战性,尤其是在处理多维数组时。 To simplify the process, it's recommended to parse the JSON as an array rather than an object.To do...
    编程 发布于2025-04-18
  • 如何在php中使用卷发发送原始帖子请求?
    如何在php中使用卷发发送原始帖子请求?
    如何使用php 创建请求来发送原始帖子请求,开始使用curl_init()开始初始化curl session。然后,配置以下选项: curlopt_url:请求 [要发送的原始数据指定内容类型,为原始的帖子请求指定身体的内容类型很重要。在这种情况下,它是文本/平原。要执行此操作,请使用包含以下标头...
    编程 发布于2025-04-18
  • HTML格式标签
    HTML格式标签
    HTML 格式化元素 **HTML Formatting is a process of formatting text for better look and feel. HTML provides us ability to format text without us...
    编程 发布于2025-04-18
  • 如何解决由于Android的内容安全策略而拒绝加载脚本... \”错误?
    如何解决由于Android的内容安全策略而拒绝加载脚本... \”错误?
    Unveiling the Mystery: Content Security Policy Directive ErrorsEncountering the enigmatic error "Refused to load the script..." when deployi...
    编程 发布于2025-04-18
  • JavaScript中如何动态访问全局变量?
    JavaScript中如何动态访问全局变量?
    在JavaScript 一种方法是使用窗口对象存储和检索变量。通过引用全局范围,可以使用其名称动态访问变量。 //一个脚本 var somevarname_10 = 20; //另一个脚本 window.all_vars = {}; window.all_vars ['somevarnam...
    编程 发布于2025-04-18
  • 切换到MySQLi后CodeIgniter连接MySQL数据库失败原因
    切换到MySQLi后CodeIgniter连接MySQL数据库失败原因
    Unable to Connect to MySQL Database: Troubleshooting Error MessageWhen attempting to switch from the MySQL driver to the MySQLi driver in CodeIgniter,...
    编程 发布于2025-04-18
  • 为什么我在Silverlight Linq查询中获得“无法找到查询模式的实现”错误?
    为什么我在Silverlight Linq查询中获得“无法找到查询模式的实现”错误?
    查询模式实现缺失:解决“无法找到”错误在Silverlight应用程序中,尝试使用LINQ建立LINQ连接以错误而实现的数据库”,无法找到查询模式的实现。”当省略LINQ名称空间或查询类型缺少IEnumerable 实现时,通常会发生此错误。 解决问题来验证该类型的质量是至关重要的。在此特定实例中...
    编程 发布于2025-04-18
  • 在GO中构造SQL查询时,如何安全地加入文本和值?
    在GO中构造SQL查询时,如何安全地加入文本和值?
    在go中构造文本sql查询时,在go sql queries 中,在使用conting and contement和contement consem per时,尤其是在使用integer per当per当per时,per per per当per. [&​​&&&&&&&&&&&&&&&默元组方法在...
    编程 发布于2025-04-18
  • 如何将MySQL数据库添加到Visual Studio 2012中的数据源对话框中?
    如何将MySQL数据库添加到Visual Studio 2012中的数据源对话框中?
    在Visual Studio 2012 尽管已安装了MySQL Connector v.6.5.4,但无法将MySQL数据库添加到实体框架的“ DataSource对话框”中。为了解决这一问题,至关重要的是要了解MySQL连接器v.6.5.5及以后的6.6.x版本将提供MySQL的官方Visual...
    编程 发布于2025-04-18
  • 找到最大计数时,如何解决mySQL中的“组函数\”错误的“无效使用”?
    找到最大计数时,如何解决mySQL中的“组函数\”错误的“无效使用”?
    如何在mySQL中使用mySql 检索最大计数,您可能会遇到一个问题,您可能会在尝试使用以下命令:理解错误正确找到由名称列分组的值的最大计数,请使用以下修改后的查询: 计数(*)为c 来自EMP1 按名称组 c desc订购 限制1 查询说明 select语句提取名称列和每个名称...
    编程 发布于2025-04-18
  • Java为何无法创建泛型数组?
    Java为何无法创建泛型数组?
    通用阵列创建错误 arrayList [2]; JAVA报告了“通用数组创建”错误。为什么不允许这样做?答案:Create an Auxiliary Class:public static ArrayList<myObject>[] a = new ArrayList<myO...
    编程 发布于2025-04-18
  • 在C#中如何高效重复字符串字符用于缩进?
    在C#中如何高效重复字符串字符用于缩进?
    在基于项目的深度下固定字符串时,重复一个字符串以进行凹痕,很方便有效地有一种有效的方法来返回字符串重复指定的次数的字符串。使用指定的次数。 constructor 这将返回字符串“ -----”。 字符串凹痕= new String(' - ',depth); console.Wr...
    编程 发布于2025-04-18
  • Java字符串非空且非null的有效检查方法
    Java字符串非空且非null的有效检查方法
    检查字符串是否不是null而不是空的 if(str!= null && str.isementy())二手: if(str!= null && str.length()== 0) option 3:trim()。isement(Isement() trim whitespace whitesp...
    编程 发布于2025-04-18
  • React Helmet:React网站头部管理全攻略
    React Helmet:React网站头部管理全攻略
    React头盔:掌握您的React站点的头 直接操纵 document.title 很麻烦且容易出错。 React头盔提供了简化的解决方案。 但是,为了完全利用其功能,尤其是对于SEO(搜索引擎与客户端渲染 content)的努力,SSR是必不可少的。 因此,我们将使用基于React的静态...
    编程 发布于2025-04-18

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3