”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 免费项目:使用 ChatGPT 通过 Python 和 Matplotlib 进行绘图

免费项目:使用 ChatGPT 通过 Python 和 Matplotlib 进行绘图

发布于2024-11-04
浏览:383

Free Project: Use ChatGPT to Plot with Python and Matplotlib

Want to learn to plot in Python? ChatGPT will help you.

This project asks ChatGPT to teach you how to generate Python code for creating plots and visualizations. Simply provide a brief description of the plot you want to create, and ChatGPT will generate the necessary code using the popular Matplotlib library. This tool allows even users with no programming experience to develop professional-grade plots for their data. Whether you’re a researcher, data scientist, or student, ChatGPT makes it easy to create beautiful and informative plots in Python. (Generated by ChatGPT with minor changes).

The project in JupyterNotebook is available free in Cognitive Class.


1. Let’s ask about our specific area of interest which we want to learn.

Asking :”teach me how to plot in python”
The result:
There are many ways to plot data in Python. Here is a simple example using Matplotlib, a popular data visualization library in Python:

# using the provided by chatGPT to run in the notebook
import matplotlib.pyplot as plt
# Sample data
x = [1, 2, 3, 4]
y = [1, 4, 9, 16]
# Create a figure and an axes
fig, ax = plt.subplots()
# Plot the data
ax.plot(x, y)
# Add a title
ax.set_title('My Plot')
# Show the plot
plt.show()

Free Project: Use ChatGPT to Plot with Python and Matplotlib

This will create a simple line plot of the data in x and y. There are many options and customization options available for creating plots in Matplotlib. For example, you can change the appearance of the lines, change the axis labels, add a legend, etc.

Here is some more information on Matplotlib and other plotting libraries in Python:
The Matplotlib documentation: https://matplotlib.org/stable/index.html
A tutorial on Matplotlib: https://matplotlib.org/stable/tutorials/index.html
Seaborn, a data visualization library based on Matplotlib: https://seaborn.pydata.org/
Plotly, a library for creating interactive plots: https://plotly.com/python/

As you can see, ChatGPT provides introductory text and code blocks (with a copy icon for convenience), and concludes the conversation with additional useful information.

2. You can ask follow-up questions

By simply asking “show me more examples of plots in python”. In fact, chatGPT remembers your previous conversations.
The result:
Here are a few more examples of plots that you can create in Python using the Matplotlib library: Scatter plot

import matplotlib.pyplot as plt

# Sample data
x = [1, 2, 3, 4]
y = [1, 4, 9, 16]

# Create a figure and an axes
fig, ax = plt.subplots()

# Plot the data
ax.scatter(x, y)

# Add a title
ax.set_title('My Scatter Plot')

# Show the plot
plt.show()

Free Project: Use ChatGPT to Plot with Python and Matplotlib

Bar plot

import matplotlib.pyplot as plt

# Sample data
x = [1, 2, 3, 4]
y = [1, 4, 9, 16]

# Create a figure and an axes
fig, ax = plt.subplots()

# Plot the data
ax.bar(x, y)

# Add a title
ax.set_title('My Bar Plot')

# Show the plot
plt.show()

Free Project: Use ChatGPT to Plot with Python and Matplotlib

Pie chart

import matplotlib.pyplot as plt

# Sample data
labels = ['Apples', 'Bananas', 'Oranges']
sizes = [30, 45, 25]

# Create a figure and an axes
fig, ax = plt.subplots()

# Plot the data
ax.pie(sizes, labels=labels)

# Add a title
ax.set_title('My Pie Chart')

# Show the plot
plt.show()

Free Project: Use ChatGPT to Plot with Python and Matplotlib

Keep in mind that these are just a few examples, and there are many other types of plots that you can create in Python using Matplotlib. You can find more information and examples in the Matplotlib documentation: https://matplotlib.org/stable/index.html.

Let's plot from a sample dataset

3. Suggest some sample datasets

The intial stage you need to load data. We can ask ChatGPT to suggest some sample datasets by asking “Could you tell me sample dataset for beginners in python?”
The result:
Sure! Here are a few datasets that might be useful for beginners in Python:

Iris dataset: This is a small dataset that contains information about different species of iris flowers, including the sepal and petal length and width. It is often used as a beginner’s dataset for learning machine learning and data analysis techniques. You can load the Iris dataset in Python using the sklearn.datasets module.

Boston Housing dataset: This dataset contains information about housing prices in the Boston area, including the median value of homes, crime rate, and other factors. It is often used as a beginner’s dataset for learning regression techniques. You can load the Boston Housing dataset in Python using the sklearn.datasets module.

MNIST dataset: This is a dataset of handwritten digits, with 60,000 training examples and 10,000 test examples. It is often used as a beginner’s dataset for learning image classification techniques. You can load the MNIST dataset in Python using the keras.datasets module.

From these suggested datasets, we select Iris dataset to continue to work with as a sample.

3.1. Load the iris dataset as a sample to work wit

h

We need a proper sample in tabular format, so we asked “load iris data with table looking format”
The result:

To load the Iris dataset in a table-like format in Python, you can use the Pandas library. Here is an example of how you can load the Iris dataset and display it in a table-like format:

import pandas as pd
from sklearn import datasets

# Load the Iris dataset
iris = datasets.load_iris()

# Create a DataFrame with the features and target values
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target

# Display the DataFrame
print(df)
#--> or we can call the dataset to displace it
df

Free Project: Use ChatGPT to Plot with Python and Matplotlib

_This will create a Pandas DataFrame with the features (sepal length, sepal width, petal length, and petal width) of the Iris dataset as columns, and the target values (the species of iris) as an additional column.

You can then use the usual Pandas functions to manipulate and analyze the data in the DataFrame. For example, you can use the head() function to display the first few rows of the DataFrame, or use the describe() function to get summary statistics for the numerical columns._

4. Plot the dataset

Conveniently, we can ask follow-up questions; here we asked “plot it”
The result:

To plot the Iris dataset using Matplotlib, you can use the following code:

# --> Trying of the suggestions from ChatGPT
# --> we removed the redundant lines (e.g. loading libraries and importing data) from the suggestion

# Create a figure and an axes
fig, ax = plt.subplots()

# Plot the data, coloring the points by the target values
scatter = ax.scatter(df['sepal length (cm)'], df['sepal width (cm)'], c=df['target'])

# Add a legend
legend = ax.legend(*scatter.legend_elements(), title='Species')

# Add a title
ax.set_title('Iris dataset')

# Show the plot
plt.show()

Free Project: Use ChatGPT to Plot with Python and Matplotlib

4.1. Plot-specific column

We select and ask to plot a specific column in the dataset. For example, asking “show me the distribution of the column ‘sepal length (cm)”
The result:

To show the distribution of a column in a Pandas DataFrame, you can use the hist() function of the DataFrame. For example, to show the distribution of the ‘sepal length (cm)’ column in the Iris dataset, you can use the following code:

# Create a figure and an axes
fig, ax = plt.subplots()

# Plot the distribution of the 'sepal length (cm)' column
df['sepal length (cm)'].hist(ax=ax)

# Add a title
ax.set_title('Distribution of sepal length')

# Show the plot
plt.show()

Free Project: Use ChatGPT to Plot with Python and Matplotlib

As you may notice, the plot does not have labels. Therefore, we can **ask “redo it with proper axis labels”.
The result:
**

# Create a figure and an axes
fig, ax = plt.subplots()

# Plot the distribution of the 'sepal length (cm)' column
df['sepal length (cm)'].hist(ax=ax)

# Add axis labels
ax.set_xlabel('Sepal length (cm)')
ax.set_ylabel('Frequency')

# Add a title
ax.set_title('Distribution of sepal length')

# Show the plot
plt.show()

Free Project: Use ChatGPT to Plot with Python and Matplotlib

4.2. More complex plot

Another useful plot to show the distribution is using boxplot which enables us to visualize standard deviation and identify outliers.

Here we ask for a boxplot of all the columns showing in the single plot by asking “show me boxplot of distributions of all columns in same plot”.
The result:

To show the distribution of all columns in a Pandas DataFrame as boxplots on the same plot, you can use the boxplot() function of the DataFrame.

For example, to show the distributions of all columns in the Iris dataset as boxplots, you can use the following code:

import matplotlib.pyplot as plt
import pandas as pd
from sklearn import datasets

# Load the Iris dataset
iris = datasets.load_iris()

# Create a DataFrame with the features
df = pd.DataFrame(iris.data, columns=iris.feature_names)

# Add a column with the target values
df['target'] = iris.target

# Create a figure and an axes
fig, ax = plt.subplots()

# Plot the boxplots of all columns
df.boxplot(ax=ax)

# Add a title
ax.set_title('Distributions of all columns')

# Show the plot
plt.show()

Free Project: Use ChatGPT to Plot with Python and Matplotlib

5. Using chatGPT for your own project

ChatGPT is an excellent tool for working on your project. It is important to frame the question in a way that addresses your problem. Keep in mind that dividing your project into smaller blocks and addressing them individually is the key to addressing the project.

To ask a programming question from ChatGPT, you can simply provide a clear and concise description of your problem, along with any relevant code or error messages. You should also specify the programming language and any libraries or frameworks that you are using.

5.1. How to properly formulate a question (aka. prompt) for ChatGPT

So, let's ask ChatGPT what it thinks.

When formulating a prompt for ChatGPT, it’s important to keep a few things in mind in order to get the most out of the model:
Be specific and clear about what you want the model to do. For example, instead of asking “What do you know about this topic?”, ask “Can you provide a brief overview of the history of the topic?”

Provide context if necessary. If you’re asking a question about a specific event or person, give some background information so that the model can understand the context in which you’re asking the question.

Be concise. Long and complex prompts can be difficult for the model to understand and may result in less accurate or relevant responses.

Avoid using overly technical language or jargon that the model may not be familiar with.

Avoid asking multiple questions in one prompt, it is better to ask one question at a time.

Here are a few examples of good prompts for ChatGPT:
“Can you explain the main difference between supervised and unsupervised learning?”

“What are the main components of a neural network and how do they work?”

“Please write a short story about a robot who can read minds”

On the other hand, some examples of poor prompts would be:

“everything”
“What can you tell me?”
“what you know”

By following these guidelines, you can help ensure that you get the most accurate and relevant responses from the model when using ChatGPT.

5.2. Keep in mind as a data scientist

ChatGPT is not perfect; the example provided is from sklearn. In the real world, you need to load your own data from your resource, using Pandas (the example below shows loading iris from local storage).

In general, as a practicing data scientist, you will frequently encounter the multifaceted process of data collection, preparation, model construction, and interpretation. These stages each have their own unique requirements in terms of skills and resources. For instance, you may utilize pandas to load and manipulate your datasets. It’s important to keep in mind that the examples provided by ChatGPT are intended to serve as a foundational learning aid, and may not be suitable for handling more complex or substantial datasets.

5.3. Don’t panic chat GPT is not going to replace data scientist (yet!)

So, let's ask ChatGPT what it thinks.

There are several reasons why ChatGPT and other large language models are not going to replace data scientists:

Data scientists have a much broader skill set: Data scientists are trained in a wide range of skills, including data analysis, machine learning, programming, statistics, and more. ChatGPT and other large language models are only capable of generating text based on a given prompt, and they do not have the other skills that data scientists possess.

Data scientists can interpret and explain the results of their work: Data scientists are trained to interpret and explain the results of their work, which is critical for decision-making and communication with stakeholders. ChatGPT and other large language models are not capable of interpreting or explaining the results of their work.

Data scientists can work with a wide range of data: Data scientists are trained to work with a wide range of data, including structured and unstructured data, and they can use a variety of tools and techniques to extract insights from the data. ChatGPT and other large language models are only capable of generating text based on a given prompt, and they are not able to work with other types of data.

Data scientists can work with a wide range of stakeholders: Data scientists are trained to work with a wide range of stakeholders, including business leaders, subject matter experts, and technical experts, and they can communicate complex concepts in a clear and understandable way. ChatGPT and other large language models are not able to work with stakeholders or communicate complex concepts.

Check out this beginner friendly guided project other free courses developed by IBM developers and data scientists at https://cognitiveclass.ai/

Until next time!

版本声明 本文转载于:https://dev.to/cognitiveclass/free-project-use-chatgpt-to-plot-with-python-and-matplotlib-5ha6?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何修复 macOS 上 Django 中的“配置不正确:加载 MySQLdb 模块时出错”?
    如何修复 macOS 上 Django 中的“配置不正确:加载 MySQLdb 模块时出错”?
    MySQL配置不正确:相对路径的问题在Django中运行python manage.py runserver时,可能会遇到以下错误:ImproperlyConfigured: Error loading MySQLdb module: dlopen(/Library/Python/2.7/site-...
    编程 发布于2024-11-16
  • 除了“if”语句之外:还有什么地方可以在不进行强制转换的情况下使用具有显式“bool”转换的类型?
    除了“if”语句之外:还有什么地方可以在不进行强制转换的情况下使用具有显式“bool”转换的类型?
    无需强制转换即可上下文转换为 bool您的类定义了对 bool 的显式转换,使您能够在条件语句中直接使用其实例“t”。然而,这种显式转换提出了一个问题:“t”在哪里可以在不进行强制转换的情况下用作 bool?上下文转换场景C 标准指定了四种值可以根据上下文转换为的主要场景bool:语句:if、whi...
    编程 发布于2024-11-16
  • 在 Go 中使用 WebSocket 进行实时通信
    在 Go 中使用 WebSocket 进行实时通信
    构建需要实时更新的应用程序(例如聊天应用程序、实时通知或协作工具)需要一种比传统 HTTP 更快、更具交互性的通信方法。这就是 WebSockets 发挥作用的地方!今天,我们将探讨如何在 Go 中使用 WebSocket,以便您可以向应用程序添加实时功能。 在这篇文章中,我们将介绍: WebSoc...
    编程 发布于2024-11-16
  • Bootstrap 4 Beta 中的列偏移发生了什么?
    Bootstrap 4 Beta 中的列偏移发生了什么?
    Bootstrap 4 Beta:列偏移的删除和恢复Bootstrap 4 在其 Beta 1 版本中引入了重大更改柱子偏移了。然而,随着 Beta 2 的后续发布,这些变化已经逆转。从 offset-md-* 到 ml-auto在 Bootstrap 4 Beta 1 中, offset-md-*...
    编程 发布于2024-11-16
  • 如何在 PHP 中组合两个关联数组,同时保留唯一 ID 并处理重复名称?
    如何在 PHP 中组合两个关联数组,同时保留唯一 ID 并处理重复名称?
    在 PHP 中组合关联数组在 PHP 中,将两个关联数组组合成一个数组是一项常见任务。考虑以下请求:问题描述:提供的代码定义了两个关联数组,$array1和$array2。目标是创建一个新数组 $array3,它合并两个数组中的所有键值对。 此外,提供的数组具有唯一的 ID,而名称可能重合。要求是构...
    编程 发布于2024-11-16
  • 如何使用 MySQL 查找今天生日的用户?
    如何使用 MySQL 查找今天生日的用户?
    如何使用 MySQL 识别今天生日的用户使用 MySQL 确定今天是否是用户的生日涉及查找生日匹配的所有行今天的日期。这可以通过一个简单的 MySQL 查询来实现,该查询将存储为 UNIX 时间戳的生日与今天的日期进行比较。以下 SQL 查询将获取今天有生日的所有用户: FROM USERS ...
    编程 发布于2024-11-16
  • 大批
    大批
    方法是可以在对象上调用的 fns 数组是对象,因此它们在 JS 中也有方法。 slice(begin):将数组的一部分提取到新数组中,而不改变原始数组。 let arr = ['a','b','c','d','e']; // Usecase: Extract till index p...
    编程 发布于2024-11-16
  • 为什么 Visual Studio 2010 中 x86 和 x64 的浮点运算不同?
    为什么 Visual Studio 2010 中 x86 和 x64 的浮点运算不同?
    x86 和 x64 之间的浮点算术差异在 Visual Studio 2010 中,x86 和 x64 版本之间的浮点算术存在明显差异当比较某些表达式的值时出现。这种差异体现在以下代码中:float a = 50.0f; float b = 65.0f; float c = 1.3f; float ...
    编程 发布于2024-11-15
  • 如何提高带有通配符的 MySQL LIKE 运算符的性能?
    如何提高带有通配符的 MySQL LIKE 运算符的性能?
    MySQL LIKE 运算符优化问题:使用通配符(例如 '%test% ')?答案: 是的,在查询中使用特定模式时,MySQL 可以优化 LIKE 运算符的性能。前缀通配符: 如果您的查询类似于 foo LIKE 'abc%' 或 foo LIKE 'abc�...
    编程 发布于2024-11-15
  • 如何使用 PHP 通过 POST 向外部网站发送数据?
    如何使用 PHP 通过 POST 向外部网站发送数据?
    在 PHP 中通过 POST 重定向和发送数据在 PHP 中,您可能会遇到需要将用户重定向到外部的情况网站并通过 POST 将数据传递到该网站。与 HTML 表单不同,PHP 本身并不支持此行为。GET 与 POST在 Web 开发中,有两种主要方法用于从源发送数据到目的地:GET:数据作为查询参数...
    编程 发布于2024-11-15
  • 如何使用 GCC 捕获 Linux 中的分段错误?
    如何使用 GCC 捕获 Linux 中的分段错误?
    捕获 Linux 中的分段错误问:我在第三方库中遇到分段错误,但我无法解决根本问题。是否有跨平台或特定于平台的解决方案来使用 gcc 捕获 Linux 中的这些错误?A:Linux 允许将分段错误作为异常处理。当程序遇到此类故障时,它会收到 SIGSEGV 信号。通过设置信号处理程序,您可以拦截此信...
    编程 发布于2024-11-15
  • 如何在不创建实例的情况下访问Go结构体的类型?
    如何在不创建实例的情况下访问Go结构体的类型?
    在不创建物理结构的情况下访问 Reflect.Type在 Go 中,动态加载问题的解决方案需要访问结构的类型,而无需物理创建它们。虽然现有的解决方案要求在类型注册之前创建结构体并清零,但存在一种更有效的方法。人们可以利用 reflect.TypeOf((*Struct)(nil)).Elem()手术...
    编程 发布于2024-11-15
  • Java中如何高效地将整数转换为字节数组?
    Java中如何高效地将整数转换为字节数组?
    Java 中整数到字节数组的高效转换将整数转换为字节数组可用于多种目的,例如网络传输或数据存储。有多种方法可以实现此转换。ByteBuffer 类:一种有效的方法是使用 ByteBuffer 类。 ByteBuffer 是一个存储二进制数据并提供各种操作来操纵它的缓冲区。使用 ByteBuffer ...
    编程 发布于2024-11-15
  • 如何在 Go 中按多个字段对结构体切片进行排序?
    如何在 Go 中按多个字段对结构体切片进行排序?
    按多个字段对切片对象进行排序按多个条件排序考虑以下 Parent 和 Child 结构:type Parent struct { id string children []Child } type Child struct { id string }假设我们有一个...
    编程 发布于2024-11-15
  • Qt 线程与 Python 线程:我应该在 PyQt 应用程序中使用哪个?
    Qt 线程与 Python 线程:我应该在 PyQt 应用程序中使用哪个?
    PyQt 应用程序中的线程:Qt 线程与 Python 线程寻求使用 PyQt 创建响应式 GUI 应用程序的开发人员经常遇到执行的挑战长时间运行的任务而不影响 UI 的功能。一种解决方案是使用单独的线程来完成这些任务。这就提出了是使用 Qt 线程还是原生 Python 线程模块的问题。Qt 线程提...
    编程 发布于2024-11-15

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3