”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 使用 faker 和 pandas Python 库创建用于测试的综合数据

使用 faker 和 pandas Python 库创建用于测试的综合数据

发布于2024-11-07
浏览:342

介绍:
全面的测试对于数据驱动的应用程序至关重要,但它通常依赖于拥有正确的数据集,而这些数据集可能并不总是可用。无论您是开发 Web 应用程序、机器学习模型还是后端系统,真实且结构化的数据对于正确验证和确保稳健的性能至关重要。由于隐私问题、许可限制或仅仅是相关数据的不可用,获取真实世界数据可能会受到限制。这就是合成数据变得有价值的地方。

在本博客中,我们将探讨如何使用Python为不同场景生成合成数据,包括:

  1. 相关表:表示一对多关系。
  2. 分层数据:常用于组织结构。
  3. 复杂关系:如招生系统中的多对多关系。

我们将利用 faker 和 pandas 库为这些用例创建真实的数据集。


示例 1:为客户和订单创建综合数据(一对多关系)

在许多应用中,数据存储在具有外键关系的多个表中。让我们为客户及其订单生成综合数据。一个客户可以下多个订单,代表一对多的关系。

生成客户表

Customers 表包含基本信息,例如 CustomerID、姓名和电子邮件地址。

import pandas as pd
from faker import Faker
import random

fake = Faker()

def generate_customers(num_customers):
    customers = []
    for _ in range(num_customers):
        customer_id = fake.uuid4()
        name = fake.name()
        email = fake.email()
        customers.append({'CustomerID': customer_id, 'CustomerName': name, 'Email': email})
    return pd.DataFrame(customers)

customers_df = generate_customers(10)

Using faker and pandas Python Libraries to Create Synthetic Data for Testing

此代码使用 Faker 生成 10 个随机客户,以创建真实的姓名和电子邮件地址。

生成订单表

现在,我们生成 Orders 表,其中每个订单通过 CustomerID 与客户关联。

def generate_orders(customers_df, num_orders):
    orders = []
    for _ in range(num_orders):
        order_id = fake.uuid4()
        customer_id = random.choice(customers_df['CustomerID'].tolist())
        product = fake.random_element(elements=('Laptop', 'Phone', 'Tablet', 'Headphones'))
        price = round(random.uniform(100, 2000), 2)
        orders.append({'OrderID': order_id, 'CustomerID': customer_id, 'Product': product, 'Price': price})
    return pd.DataFrame(orders)

orders_df = generate_orders(customers_df, 30)

Using faker and pandas Python Libraries to Create Synthetic Data for Testing

在本例中,Orders 表使用 CustomerID 将每个订单链接到客户。每个客户可以下多个订单,形成一对多的关系。


示例 2:生成部门和员工的层次结构数据

层次结构数据通常用于部门有多名员工的组织环境中。让我们模拟一个具有部门的组织,每个部门都有多名员工。

生成部门表

Departments 表包含每个部门唯一的 DepartmentID、名称和经理。

def generate_departments(num_departments):
    departments = []
    for _ in range(num_departments):
        department_id = fake.uuid4()
        department_name = fake.company_suffix()
        manager = fake.name()
        departments.append({'DepartmentID': department_id, 'DepartmentName': department_name, 'Manager': manager})
    return pd.DataFrame(departments)

departments_df = generate_departments(10)

Using faker and pandas Python Libraries to Create Synthetic Data for Testing

生成员工表

接下来,我们生成Employees表,其中每个员工通过DepartmentID与一个部门相关联。

def generate_employees(departments_df, num_employees):
    employees = []
    for _ in range(num_employees):
        employee_id = fake.uuid4()
        employee_name = fake.name()
        email = fake.email()
        department_id = random.choice(departments_df['DepartmentID'].tolist())
        salary = round(random.uniform(40000, 120000), 2)
        employees.append({
            'EmployeeID': employee_id,
            'EmployeeName': employee_name,
            'Email': email,
            'DepartmentID': department_id,
            'Salary': salary
        })
    return pd.DataFrame(employees)

employees_df = generate_employees(departments_df, 100)

Using faker and pandas Python Libraries to Create Synthetic Data for Testing

这种层次结构通过DepartmentID将每个员工与一个部门联系起来,形成父子关系。


示例 3:模拟课程注册的多对多关系

在某些场景中,存在多对多关系,其中一个实体与许多其他实体相关。让我们用注册多个课程的学生来模拟这一点,其中每个课程都有多个学生。

生成课程表

def generate_courses(num_courses):
    courses = []
    for _ in range(num_courses):
        course_id = fake.uuid4()
        course_name = fake.bs().title()
        instructor = fake.name()
        courses.append({'CourseID': course_id, 'CourseName': course_name, 'Instructor': instructor})
    return pd.DataFrame(courses)

courses_df = generate_courses(20)

Using faker and pandas Python Libraries to Create Synthetic Data for Testing

生成学生表

def generate_students(num_students):
    students = []
    for _ in range(num_students):
        student_id = fake.uuid4()
        student_name = fake.name()
        email = fake.email()
        students.append({'StudentID': student_id, 'StudentName': student_name, 'Email': email})
    return pd.DataFrame(students)

students_df = generate_students(50)
print(students_df)

Using faker and pandas Python Libraries to Create Synthetic Data for Testing

生成课程报名表

CourseEnrollments 表捕获学生和课程之间的多对多关系。

def generate_course_enrollments(students_df, courses_df, num_enrollments):
    enrollments = []
    for _ in range(num_enrollments):
        enrollment_id = fake.uuid4()
        student_id = random.choice(students_df['StudentID'].tolist())
        course_id = random.choice(courses_df['CourseID'].tolist())
        enrollment_date = fake.date_this_year()
        enrollments.append({
            'EnrollmentID': enrollment_id,
            'StudentID': student_id,
            'CourseID': course_id,
            'EnrollmentDate': enrollment_date
        })
    return pd.DataFrame(enrollments)

enrollments_df = generate_course_enrollments(students_df, courses_df, 200)

Using faker and pandas Python Libraries to Create Synthetic Data for Testing

在此示例中,我们创建一个链接表来表示学生和课程之间的多对多关系。


结论:
使用 Python 以及 Faker 和 Pandas 等库,您可以生成真实且多样化的合成数据集,以满足各种测试需求。在此博客中,我们介绍了:

  1. 相关表:展示客户和订单之间的一对多关系。
  2. 分层数据:说明部门和员工之间的父子关系。
  3. 复杂关系:模拟学生和课程之间的多对多关系。

这些示例为生成适合您需求的合成数据奠定了基础。进一步的增强功能,例如创建更复杂的关系、为特定数据库定制数据或扩展数据集以进行性能测试,可以将合成数据生成提升到一个新的水平。

这些示例为生成合成数据提供了坚实的基础。然而,可以进行进一步的增强以增加复杂性和特异性,例如:

  1. 数据库特定数据:为不同数据库系统定制数据生成(例如,SQL 与 NoSQL)。
  2. 更复杂的关系:创建额外的相互依赖关系,例如时间关系、多级层次结构或唯一约束。
  3. 扩展数据:生成更大的数据集以进行性能测试或压力测试,确保系统能够大规模处理现实世界的条件。 通过生成根据您的需求定制的合成数据,您可以模拟开发、测试和优化应用程序的实际条件,而无需依赖敏感或难以获取的数据集。

如果您喜欢这篇文章,请与您的朋友和同事分享。您可以在 LinkedIn 上与我联系,讨论任何进一步的想法。


版本声明 本文转载于:https://dev.to/rahulbhave/using-faker-and-pandas-python-libraries-to-create-synthetic-data-for-testing-4gn4?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何克服PHP的功能重新定义限制?
    如何克服PHP的功能重新定义限制?
    克服PHP的函数重新定义限制在PHP中,多次定义一个相同名称的函数是一个no-no。尝试这样做,如提供的代码段所示,将导致可怕的“不能重新列出”错误。 但是,PHP工具腰带中有一个隐藏的宝石:runkit扩展。它使您能够灵活地重新定义函数。 runkit_function_renction_re...
    编程 发布于2025-04-27
  • 如何解决AppEngine中“无法猜测文件类型,使用application/octet-stream...”错误?
    如何解决AppEngine中“无法猜测文件类型,使用application/octet-stream...”错误?
    appEngine静态文件mime type override ,静态文件处理程序有时可以覆盖正确的mime类型,在错误消息中导致错误消息:“无法猜测mimeType for for file for file for [File]。 application/application/octet...
    编程 发布于2025-04-27
  • 如何简化PHP中的JSON解析以获取多维阵列?
    如何简化PHP中的JSON解析以获取多维阵列?
    php 试图在PHP中解析JSON数据的JSON可能具有挑战性,尤其是在处理多维数组时。 To simplify the process, it's recommended to parse the JSON as an array rather than an object.To do...
    编程 发布于2025-04-27
  • 在Python中如何创建动态变量?
    在Python中如何创建动态变量?
    在Python 中,动态创建变量的功能可以是一种强大的工具,尤其是在使用复杂的数据结构或算法时,Dynamic Variable Creation的动态变量创建。 Python提供了几种创造性的方法来实现这一目标。利用dictionaries 一种有效的方法是利用字典。字典允许您动态创建密钥并分...
    编程 发布于2025-04-27
  • 如何从Google API中检索最新的jQuery库?
    如何从Google API中检索最新的jQuery库?
    从Google APIS 问题中提供的jQuery URL是版本1.2.6。对于检索最新版本,以前有一种使用特定版本编号的替代方法,它是使用以下语法:获取最新版本:未压缩)While these legacy URLs still remain in use, it is recommended ...
    编程 发布于2025-04-27
  • HTML格式标签
    HTML格式标签
    HTML 格式化元素 **HTML Formatting is a process of formatting text for better look and feel. HTML provides us ability to format text without us...
    编程 发布于2025-04-27
  • 为什么使用固定定位时,为什么具有100%网格板柱的网格超越身体?
    为什么使用固定定位时,为什么具有100%网格板柱的网格超越身体?
    网格超过身体,用100%grid-template-columns 为什么在grid-template-colms中具有100%的显示器,当位置设置为设置的位置时,grid-template-colly修复了?问题: 考虑以下CSS和html: class =“ snippet-code”> g...
    编程 发布于2025-04-27
  • Android如何向PHP服务器发送POST数据?
    Android如何向PHP服务器发送POST数据?
    在android apache httpclient(已弃用) httpclient httpclient = new defaulthttpclient(); httppost httppost = new httppost(“ http://www.yoursite.com/script.p...
    编程 发布于2025-04-27
  • 如何使用不同数量列的联合数据库表?
    如何使用不同数量列的联合数据库表?
    合并列数不同的表 当尝试合并列数不同的数据库表时,可能会遇到挑战。一种直接的方法是在列数较少的表中,为缺失的列追加空值。 例如,考虑两个表,表 A 和表 B,其中表 A 的列数多于表 B。为了合并这些表,同时处理表 B 中缺失的列,请按照以下步骤操作: 确定表 B 中缺失的列,并将它们添加到表的末...
    编程 发布于2025-04-27
  • 如何使用PHP将斑点(图像)正确插入MySQL?
    如何使用PHP将斑点(图像)正确插入MySQL?
    essue VALUES('$this->image_id','file_get_contents($tmp_image)')";This code builds a string in PHP, but the function call ...
    编程 发布于2025-04-27
  • Python中嵌套函数与闭包的区别是什么
    Python中嵌套函数与闭包的区别是什么
    嵌套函数与python 在python中的嵌套函数不被考虑闭合,因为它们不符合以下要求:不访问局部范围scliables to incling scliables在封装范围外执行范围的局部范围。 make_printer(msg): DEF打印机(): 打印(味精) ...
    编程 发布于2025-04-27
  • eval()vs. ast.literal_eval():对于用户输入,哪个Python函数更安全?
    eval()vs. ast.literal_eval():对于用户输入,哪个Python函数更安全?
    称量()和ast.literal_eval()中的Python Security 在使用用户输入时,必须优先确保安全性。强大的Python功能Eval()通常是作为潜在解决方案而出现的,但担心其潜在风险。 This article delves into the differences betwee...
    编程 发布于2025-04-27
  • Python读取CSV文件UnicodeDecodeError终极解决方法
    Python读取CSV文件UnicodeDecodeError终极解决方法
    在试图使用已内置的CSV模块读取Python中时,CSV文件中的Unicode Decode Decode Decode Decode decode Error读取,您可能会遇到错误的错误:无法解码字节 在位置2-3中:截断\ uxxxxxxxx逃脱当CSV文件包含特殊字符或Unicode的路径逃...
    编程 发布于2025-04-27
  • Java数组中元素位置查找技巧
    Java数组中元素位置查找技巧
    在Java数组中检索元素的位置 利用Java的反射API将数组转换为列表中,允许您使用indexof方法。 (primitives)(链接到Mishax的解决方案) 用于排序阵列的数组此方法此方法返回元素的索引,如果发现了元素的索引,或一个负值,指示应放置元素的插入点。
    编程 发布于2025-04-27
  • 我可以将加密从McRypt迁移到OpenSSL,并使用OpenSSL迁移MCRYPT加密数据?
    我可以将加密从McRypt迁移到OpenSSL,并使用OpenSSL迁移MCRYPT加密数据?
    将我的加密库从mcrypt升级到openssl 问题:是否可以将我的加密库从McRypt升级到OpenSSL?如果是这样,如何?答案:是的,可以将您的Encryption库从McRypt升级到OpenSSL。可以使用openssl。附加说明: [openssl_decrypt()函数要求iv参...
    编程 发布于2025-04-27

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3