”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > Python 中的错误处理和日志记录

Python 中的错误处理和日志记录

发布于2024-08-14
浏览:226

Writing software is an activity far from perfect. From ideation to production, errors can appear, and in some cases, failure can occur deliberately. This is why understanding error handling and logging in your primary programming language is a critical skill to master.

Errors can happen, and situations can arise, but how you respond—with preparation and information on the error—will get you out of the situation as quickly as possible.

In this article, we will learn about error handling and logging in Python. We will primarily explore exceptions and how to use Python’s logging package to write various types of logs.

If you are interested in more content covering topics like this, subscribe to my newsletter for regular updates on software programming, architecture, and tech-related insights.

Exceptions in Python

As in many other programming languages, Python has the capability to raise exceptions when errors occur. In programming, an exception is an event that occurs during the execution of a program, disrupting the normal flow of instructions.

In Python, exceptions are errors detected during execution. When an exception occurs, Python stops running the code and looks for a special block of code (a try/except block) to handle the error.

Here are some common exceptions that can occur in a Python program:

  • ZeroDivisionError: Occurs when attempting to divide a number by zero.

  • FileNotFoundError: Occurs when trying to open a file that doesn't exist.

  • ValueError: Occurs when trying to convert a string into an integer when the string does not represent a number.

  • IndexError: Occurs when trying to retrieve an element from a list with a non-existing index.

There are many more exceptions, and Python gives you the ability to create your own exceptions if you need custom behavior. This is a feature we will explore later in the article.

To handle Python exceptions, you need to catch them. Catching exceptions requires a simple syntax known as try/except. Let's explore this.

Try/Except

The try/except block is used to handle exceptions. Code that might raise an exception is placed in the try block, and if an exception occurs, the except block is executed. Here is the syntax of try/except in a code block:

try:
    # Code that might raise an exception
    pass
except ExceptionType as e:
    # Code to handle the exception
    pass

The code that could potentially fail is put inside the try block. If an issue arises, the program’s execution will enter the except block.

Here is a flowchart that illustrates how try/except works:

Error Handling and Logging in Python

Let’s see how we can handle a division by zero with this approach:

# Handling division by zero
try:
    result = 10 / 0
except ZeroDivisionError:
    print("Error: Cannot divide by zero.")
# The code will continue its execution

There are also additional blocks in the try/except syntax, such as else and finally:

try:
    # Code that might raise an exception
    pass
except ExceptionType as e:
    # Code to handle the exception
    pass
else:
    # Code to run if no exception is raised
    pass
finally:
    # Code that always runs, regardless of whether an exception was raised or not
    pass

These blocks are optional but serve specific purposes:

  • else Block (Optional): Contains code that runs if no exceptions are raised in the try block. It is useful for code that should only run when the try block is successful.

  • finally Block (Optional): Contains code that always runs, regardless of whether an exception was raised or not. This is typically used for cleanup actions, such as closing files or releasing resources.

Here is an example where we handle the closing of a file in finally in case of an error:

try:
    # Open the file
    file = open('example.txt', 'r')

    # Read from the file
    content = file.read()

    # Print file content (this will only execute if no exceptions are raised)
    print(content)
except FileNotFoundError as e:
    # Handle the specific exception
    print(f"Error: {e}")
except Exception as e:
    # Handle any other exceptions
    print(f"An unexpected error occurred: {e}")
else:
    # Code that runs if no exception was raised in the try block
    print("File read successfully.")
finally:
    # Ensure the file is closed, regardless of whether an exception was raised
    try:
        file.close()
        print("File closed.")
    except:
        # Handle the case where file was never opened (e.g., if open() failed)
        print("File was not opened or already closed.")

Disclaimer: The example above demonstrates file handling using try/except/finally to ensure the file is properly closed even if an error occurs. However, this approach is not ideal for everyday file operations. In practice, it is recommended to use the with statement for file handling in Python. The with statement automatically manages file opening and closing, ensuring that the file is properly closed after its suite finishes, even if an exception occurs.

This is how the try/except works. Now, there might be some confusion with if/else. When should you use try/except, and when should you use if/else?

What’s the difference between try/except and if/else? Use if/else when you want to check conditions that you can predict and handle before they cause errors, and use try/except to catch and manage exceptions that occur during code execution, particularly for errors you can’t easily anticipate.

In the case below, if/else won’t work properly:

filename = 'non_existent_file.txt'

if filename:  # This only checks if filename is not empty, not if the file exists
    # The following line will raise an exception if the file doesn't exist
    content = open(filename, 'r').read()  # This will crash if the file does not exist
    if content:
        print("File content exists:")
        print(content)
    else:
        print("File is empty.")
else:
    print("Filename is invalid.")

Here is a better solution with try/except:

filename = 'non_existent_file.txt'

try:
    content = open(filename, 'r').read()
    if content:
        print("File content exists:")
        print(content)
    else:
        print("File is empty.")
except FileNotFoundError:
    print("Error: File not found.")

In the solution above, the code attempts to open and read a file, checking if its content exists and printing it if present. If the file does not exist, it catches the FileNotFoundError and prints an error message, preventing the program from crashing.

As mentioned earlier in the article, Python allows for custom exceptions. Let’s learn more about it.

Creating Custom Exceptions in Python

In Python, you can define your own exceptions to handle specific error conditions in a more granular way. Custom exceptions are particularly useful in complex applications, such as fintech, where you may need to enforce business rules or handle specific error cases uniquely.

For example, in a fintech application, you might have a scenario where a wallet’s balance is checked against certain criteria. You may want to raise an exception if a wallet’s balance is not sufficient or does not conform to specific rules. Here’s how you can create and use a custom exception for this purpose:

# Define a custom exception
class WalletBalanceError(Exception):
    def __init__(self, message):
        self.message = message
        super().__init__(self.message)

# Function that checks wallet balance
def check_wallet_balance(wallet_balance, required_balance):
    if wallet_balance 



In this example, we define a custom exception WalletBalanceError to handle cases where a wallet’s balance does not meet the required criteria. The check_wallet_balance function raises this exception if the wallet’s balance is insufficient, providing a clear and specific error message.

Custom exceptions in Python help make the code more readable and maintainable by clearly defining specific error conditions and handling them in a structured manner.

Now that we know how to handle errors in Python, it’s time to understand what to do when these errors occur. There are many strategies, but keeping a log of these errors can help identify issues later and correct them. In the next section of this article, we will explore logging.

Logging in Python

Logging helps developers track errors, events, or any runtime information in an application or program. Logging is an important and crucial aspect of software engineering as it has the ability to record everything that goes right or wrong in a post-development application. Logging is one of the most important pillars of monitoring.

Python provides a built-in module that can be used for logging

purposes. To use this module, the first thing to do is to import it.

import logging

Then, configure the logger using the basicConfig method. You need to pass parameters to it, such as the log level, the format of the message, and the output file to save the log.

import logging

# Set up the basic configuration for logging
logging.basicConfig(filename='app.log', level=logging.DEBUG,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

# Log messages of various severity levels
logging.debug('This is a debug message')
logging.info('This is an info message')
logging.warning('This is a warning message')
logging.error('This is an error message')
logging.critical('This is a critical message')

In the example above, logs will be written to a file called app.log. The log message format includes the timestamp, logger name, log level, and the actual message.

Python logging has different log levels that indicate the severity of an event or message. These log levels allow you to categorize and filter messages based on their importance. Here’s a breakdown of the common log levels in Python:

Log Levels

  1. DEBUG: Detailed information, typically of interest only when diagnosing problems. Used for debugging purposes during development.

  2. INFO: Confirmation that things are working as expected. This is the level you would use for normal operations and informational messages.

  3. WARNING: An indication that something unexpected happened, or indicative of some problem in the near future (e.g., "disk space low"). The software is still working as expected.

  4. ERROR: Due to a more serious problem, the software has not been able to perform some function. An error indicates a significant issue that needs attention.

  5. CRITICAL: A very serious error, indicating that the program itself may be unable to continue running. Critical errors often represent severe problems that require immediate action.

The logging module allows you to control which messages are recorded by setting the logging level. Only messages that are equal to or more severe than the set level will be logged. The default level is WARNING, meaning only WARNING, ERROR, and CRITICAL messages are logged unless you change the logging configuration.

In the code example above, we set the logging level to DEBUG, which means all log messages (DEBUG, INFO, WARNING, ERROR, and CRITICAL) will be recorded in the app.log file.

You can also create custom loggers, which give you more control over how messages are logged. Custom loggers allow you to set up multiple loggers with different configurations, such as different log levels, formats, or output destinations. This is particularly useful in larger applications where you need to separate logs for different modules or components.

Here’s how you can create and use a custom logger:

import logging

# Create a custom logger
logger = logging.getLogger('my_custom_logger')

# Set the log level for the custom logger
logger.setLevel(logging.DEBUG)

# Create a file handler to write logs to a file
file_handler = logging.FileHandler('custom.log')

# Create a console handler to output logs to the console
console_handler = logging.StreamHandler()

# Set log levels for the handlers
file_handler.setLevel(logging.ERROR)
console_handler.setLevel(logging.DEBUG)

# Create a formatter for log messages
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')

# Add the formatter to the handlers
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)

# Add the handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)

# Log messages using the custom logger
logger.debug('This is a debug message')
logger.info('This is an info message')
logger.warning('This is a warning message')
logger.error('This is an error message')
logger.critical('This is a critical message')

In this example, we create a custom logger named my_custom_logger. This logger writes ERROR and more severe messages to a file called custom.log, while DEBUG and more severe messages are output to the console. By customizing the loggers, you can tailor the logging behavior to fit the specific needs of your application.

Real-world Example: Logging in a Web Application

In a web application, logging plays a critical role in monitoring and maintaining the system’s health. For example, in a Flask web application, you might use logging to track incoming requests, errors, and performance metrics.

Here’s a basic example of how you can use logging in a Flask application:

from flask import Flask, request
import logging

app = Flask(__name__)

# Set up the basic configuration for logging
logging.basicConfig(filename='webapp.log', level=logging.INFO,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

@app.route('/')
def index():
    app.logger.info('Index page accessed')
    return 'Welcome to the Flask Web Application!'

@app.route('/error')
def error():
    app.logger.error('Error page accessed')
    raise ValueError('This is a simulated error')

if __name__ == '__main__':
    app.run(debug=True)

In this Flask application, we configure logging to write logs to a file named webapp.log. Each time the index page is accessed, an informational log message is recorded. If the error page is accessed, an error log message is recorded, and a simulated error is raised.

By implementing logging in your web application, you can gain insights into user activity, system errors, and performance issues. This information is invaluable for debugging, troubleshooting, and optimizing the application.

Conclusion

Error handling and logging are essential aspects of software development, ensuring that applications run smoothly and that any issues are quickly identified and resolved.

In this article, we explored exceptions in Python, including how to handle them using try/except, and the importance of logging for tracking errors and events. We also discussed how to create custom exceptions and custom loggers to suit specific application needs.

By mastering error handling and logging, you’ll be better equipped to build robust and maintainable software that can gracefully handle unexpected situations and provide valuable insights into its operation.

If you enjoyed this article, consider subscribing to my newsletter so you don't miss out on future updates.

Your feedback is valuable! If you have any suggestions, critiques, or questions, please leave a comment below.

版本声明 本文转载于:https://dev.to/koladev/error-handling-and-logging-in-python-mi1?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • PHP阵列键值异常:了解07和08的好奇情况
    PHP阵列键值异常:了解07和08的好奇情况
    PHP数组键值问题,使用07&08 在给定数月的数组中,键值07和08呈现令人困惑的行为时,就会出现一个不寻常的问题。运行print_r($月)返回意外结果:键“ 07”丢失,而键“ 08”分配给了9月的值。此问题源于PHP对领先零的解释。当一个数字带有0(例如07或08)的前缀时,PHP将其...
    编程 发布于2025-07-13
  • 版本5.6.5之前,使用current_timestamp与时间戳列的current_timestamp与时间戳列有什么限制?
    版本5.6.5之前,使用current_timestamp与时间戳列的current_timestamp与时间戳列有什么限制?
    在时间戳列上使用current_timestamp或MySQL版本中的current_timestamp或在5.6.5 此限制源于遗留实现的关注,这些限制需要对当前的_timestamp功能进行特定的实现。 创建表`foo`( `Productid` int(10)unsigned not n...
    编程 发布于2025-07-13
  • 如何使用不同数量列的联合数据库表?
    如何使用不同数量列的联合数据库表?
    合并列数不同的表 当尝试合并列数不同的数据库表时,可能会遇到挑战。一种直接的方法是在列数较少的表中,为缺失的列追加空值。 例如,考虑两个表,表 A 和表 B,其中表 A 的列数多于表 B。为了合并这些表,同时处理表 B 中缺失的列,请按照以下步骤操作: 确定表 B 中缺失的列,并将它们添加到表的末...
    编程 发布于2025-07-13
  • Go web应用何时关闭数据库连接?
    Go web应用何时关闭数据库连接?
    在GO Web Applications中管理数据库连接很少,考虑以下简化的web应用程序代码:出现的问题:何时应在DB连接上调用Close()方法?,该特定方案将自动关闭程序时,该程序将在EXITS EXITS EXITS出现时自动关闭。但是,其他考虑因素可能保证手动处理。选项1:隐式关闭终止数...
    编程 发布于2025-07-13
  • 在UTF8 MySQL表中正确将Latin1字符转换为UTF8的方法
    在UTF8 MySQL表中正确将Latin1字符转换为UTF8的方法
    在UTF8表中将latin1字符转换为utf8 ,您遇到了一个问题,其中含义的字符(例如,“jáuòiñe”)在utf8 table tabled tablesset中被extect(例如,“致电。为了解决此问题,您正在尝试使用“ mb_convert_encoding”和“ iconv”转换受...
    编程 发布于2025-07-13
  • 编译器报错“usr/bin/ld: cannot find -l”解决方法
    编译器报错“usr/bin/ld: cannot find -l”解决方法
    错误:“ usr/bin/ld:找不到-l “ 此错误表明链接器在链接您的可执行文件时无法找到指定的库。为了解决此问题,我们将深入研究如何指定库路径并将链接引导到正确位置的详细信息。添加库搜索路径的一个可能的原因是,此错误是您的makefile中缺少库搜索路径。要解决它,您可以在链接器命令中添加...
    编程 发布于2025-07-13
  • 图片在Chrome中为何仍有边框?`border: none;`无效解决方案
    图片在Chrome中为何仍有边框?`border: none;`无效解决方案
    在chrome 在使用Chrome and IE9中的图像时遇到的一个频繁的问题是围绕图像的持续薄薄边框,尽管指定了图像,尽管指定了;和“边境:无;”在CSS中。要解决此问题,请考虑以下方法: Chrome具有忽略“ border:none; none;”的已知错误,风格。要解决此问题,请使用以下...
    编程 发布于2025-07-13
  • 如何使用Python理解有效地创建字典?
    如何使用Python理解有效地创建字典?
    在python中,词典综合提供了一种生成新词典的简洁方法。尽管它们与列表综合相似,但存在一些显着差异。与问题所暗示的不同,您无法为钥匙创建字典理解。您必须明确指定键和值。 For example:d = {n: n**2 for n in range(5)}This creates a dicti...
    编程 发布于2025-07-13
  • 为什么不````''{margin:0; }`始终删除CSS中的最高边距?
    为什么不````''{margin:0; }`始终删除CSS中的最高边距?
    在CSS 问题:不正确的代码: 全球范围将所有余量重置为零,如提供的代码所建议的,可能会导致意外的副作用。解决特定的保证金问题是更建议的。 例如,在提供的示例中,将以下代码添加到CSS中,将解决余量问题: body H1 { 保证金顶:-40px; } 此方法更精确,避免了由全局保证金重置引...
    编程 发布于2025-07-13
  • 为什么PHP的DateTime :: Modify('+1个月')会产生意外的结果?
    为什么PHP的DateTime :: Modify('+1个月')会产生意外的结果?
    使用php dateTime修改月份:发现预期的行为在使用PHP的DateTime类时,添加或减去几个月可能并不总是会产生预期的结果。正如文档所警告的那样,“当心”这些操作的“不像看起来那样直观。 ; $ date->修改('1个月'); //前进1个月 echo $ date->...
    编程 发布于2025-07-13
  • 我可以将加密从McRypt迁移到OpenSSL,并使用OpenSSL迁移MCRYPT加密数据?
    我可以将加密从McRypt迁移到OpenSSL,并使用OpenSSL迁移MCRYPT加密数据?
    将我的加密库从mcrypt升级到openssl 问题:是否可以将我的加密库从McRypt升级到OpenSSL?如果是这样,如何?答案:是的,可以将您的Encryption库从McRypt升级到OpenSSL。可以使用openssl。附加说明: [openssl_decrypt()函数要求iv参...
    编程 发布于2025-07-13
  • 如何在无序集合中为元组实现通用哈希功能?
    如何在无序集合中为元组实现通用哈希功能?
    在未订购的集合中的元素要纠正此问题,一种方法是手动为特定元组类型定义哈希函数,例如: template template template 。 struct std :: hash { size_t operator()(std :: tuple const&tuple)const {...
    编程 发布于2025-07-13
  • Java数组中元素位置查找技巧
    Java数组中元素位置查找技巧
    在Java数组中检索元素的位置 利用Java的反射API将数组转换为列表中,允许您使用indexof方法。 (primitives)(链接到Mishax的解决方案) 用于排序阵列的数组此方法此方法返回元素的索引,如果发现了元素的索引,或一个负值,指示应放置元素的插入点。
    编程 发布于2025-07-13
  • 如何修复\“常规错误:2006 MySQL Server在插入数据时已经消失\”?
    如何修复\“常规错误:2006 MySQL Server在插入数据时已经消失\”?
    How to Resolve "General error: 2006 MySQL server has gone away" While Inserting RecordsIntroduction:Inserting data into a MySQL database can...
    编程 发布于2025-07-13
  • Spark DataFrame添加常量列的妙招
    Spark DataFrame添加常量列的妙招
    在Spark Dataframe ,将常数列添加到Spark DataFrame,该列具有适用于所有行的任意值的Spark DataFrame,可以通过多种方式实现。使用文字值(SPARK 1.3)在尝试提供直接值时,用于此问题时,旨在为此目的的column方法可能会导致错误。 df.withCo...
    编程 发布于2025-07-13

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3