”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 如何使用 Docker 部署 Go 应用程序

如何使用 Docker 部署 Go 应用程序

发布于2024-11-09
浏览:298

Docker is a containerization platform that simplifies applications’ packaging, distribution, and deployment. You can harness the benefits of Go and Docker to enhance your applications’ efficiency, portability, and security.

This tutorial is invested in teaching you how you can build and deploy your Go applications with Docker. You’ll learn by building a RESTful API with the Gorilla Mux and GORM packages that you’ll containerize and deploy.

Step 1: Setting Up Your Development Environment

You’d need to have Go and Docker installed on your computer to build and containerize your Go apps with Docker.

Ensure that you have Go and Docker installed on your system. You can download Go from the official Go downloads website and Docker from Docker Hub. Visit the webpage if you haven’t, and follow the installation instructions for your specific operating system.

This article teaches how to deploy Go apps with Docker and teaches you more about installing and setting up Docker and a Postgres database, including containerizing your Go applications.

After installation, configure your Go development environment by setting environment variables and paths as needed. Ensure that you have a working Go workspace with the required directory structure.

Additionally, you can familiarize yourself with Docker's command-line interface (CLI) and basic Docker concepts.

Create a new directory for this project and run the go mod init command to initialize the directory as a Go project.

go mod init

After initializing the Go project, run this command to add the GORM and Gorilla Mux packages as dependencies to your project.

go get github.com/gorilla/mux

go get gorm.io/gorm
go get gorm.io/driver/postgres

You’ll use the Gorilla Mux package for routing. The GORM package provides an interface for you to use Go types for SQL database operations along with the driver package you installed (in this case, Postgres).

Step 2: Building the Go Application

In this tutorial, you’ll use a popular Go layered architecture style and use interfaces to interact with the various components of our app.

Here’s the directory structure of the application.

.
├── Dockerfile
├── cmd
│   └── server
│       └── main.go
└── internal
    ├── http
    │   ├── handlers.go
    │   └── users.go
    ├── models
    │   ├── database.go
    │   ├── migrations.go
    │   └── users.go
    └── users
        └── user.go

6 directories, 11 files
  1. Dockerfile: The Dockerfile is the configuration file for building the Docker image. You’ll write the contents of this file based on the API.
  2. cmd: The cmd directory usually contains the entry point of your application. The server sub-directory suggests that the API server is the main component of your project. The main.go file in the cmd/server contains the application's entry point.
  3. internal: The internal directory helps organize the internal packages of your application. The internal packages shouldn’t be exported, making them an excellent place to hide implementation details.
    • http: This subdirectory will contain HTTP-related code, including route handlers and possibly middleware for your API.
      • handlers.go: You’ll include your HTTP request handlers in this file.
      • users.go: You’ll specify HTTP handlers related to user management here.
    • models: This directory will contain database-related code and data models.
    • database.go: This file will contain code for initializing and connecting to the database.
    • migrations.go: This file handles database schema migrations, ensuring that your database schema matches your application's requirements.
    • users.go: This file will have data models or struct definitions related to users interacting with the database.
    • users: This directory will contain user-specific logic.
      • user.go: This file includes functions and structures related to user management that interact with the database implementation. The HTTP implementation interacts with the functions here.

This project structure appears well-organized, clearly separating concerns between different components. This organization makes it easier to maintain and scale your Go API as it grows.

This isn’t a Go standard. However, many Go developers and open-source projects use this structure for your applications.

Step 2a: Writing the Database Implementation

You’ll set up database functionality for your application. You’ll have to define the models using structs, connect to the database, and set up migrations for your insertion operations on your database.

Here’s the list of imports you’ll need for the database implementation.

package models

import (
    // imports from the user implementation
    "BetterApp/internal/users"

    "context"
    "gorm.io/gorm"
    "fmt"
    "gorm.io/driver/postgres"
    "gorm.io/gorm/schema"
    "os"
)

The first task is defining a strut that matches your database schema for your app. GORM provides tags for specifying additional options and constraints on fields.

// internal/models/users.go

type User struct {
    gorm.Model
    Username string `gorm:"unique;not null"`
    Email    string `gorm:"unique;not null"`
    IsActive bool   `gorm:"not null"`
}

The User struct represents the model for working with user data in a database.

In your database.go file, declare a struct to encapsulate the database connection instance. You’ll use the struct to connect to your database from other parts of the database implementation package.

// internal/models/database.go

type Database struct {
    Client *gorm.DB
}

Next, create a database connection function that connects the database implementation to the database program to the database:

// internal/models/database.go

func NewDatabase() (*Database, error) {

    // Construct a connection string using environment variables for database configuration.
    configurations := fmt.Sprintf("host=%v port=%v user=%v password=%v dbname=%v sslmode=%v",
        os.Getenv("DB_HOST"), os.Getenv("DB_PORT"), os.Getenv("DB_USERNAME"),
        os.Getenv("DB_PASSWORD"), os.Getenv("DB_NAME"), os.Getenv("SSL_MODE"))

    // Open a connection to the database using GORM and PostgreSQL driver.
    db, err := gorm.Open(postgres.New(postgres.Config{
        DSN:                  configurations,
        PreferSimpleProtocol: true,
    }), &gorm.Config{NamingStrategy: schema.NamingStrategy{
        SingularTable: true,
    }})
    if err != nil {
        return nil, err
    }

    // Enable connection pooling by configuring maximum idle and open connections.
    sqlDB, err := db.DB()
    if err != nil {
        return nil, err
    }
    sqlDB.SetMaxIdleConns(10)
    sqlDB.SetMaxOpenConns(100)

    // Return the Database instance with the established database connection.
    return &Database{
        Client: db,
    }, nil
}

The NewDatabase function creates a new Database instance and establishes a connection to the database. It returns a pointer to the Database instance, and an error, if any, occurs during the process.

After a successful database connection, you can set up migration functionality for your database implementation with the function as thus:

// internal/models/migrations.go

func (d *Database) MigrateDB() error {
    log.Println("Database Migration in Process...")

    // Use GORM AutoMigrate to migrate all the database schemas.
    err := d.Client.AutoMigrate(&User{})
    if err != nil {
        return err
    }

    log.Println("Database Migration Complete!")
    return nil
}

The MgrateDB function sets up automatic migrations for the User struct with the database client AutoMigrate function and returns an error if there’s any encountered during the process.

Step 2b: Defining Functions for the Database Implementation

In the users.go file where you defined the struct for your database schema, you can proceed to define the functions for the database implementation.

Here are the CreateUser, GetUserByID, UpdateUser, and DeleteUser functions responsible for CRUD operations on the database.

// internal/models/users.go

func (d *Database) CreateUser(ctx context.Context, user *users.User) error {
    newUser := &User{
        Username: user.Username,
        Email:    user.Email,
        IsActive: false,
    }

    if err := d.Client.WithContext(ctx).Create(newUser).Error; err != nil {
        return err
    }

    return nil
}

// GetUserByID returns the user with a specified id
func (d *Database) GetUserByID(ctx context.Context, id int64) (users.User, error) {
    user := users.User{}
    if err := d.Client.WithContext(ctx).Where("id = ?", id).First(&user).Error; err != nil {
        return users.User(User{}), err
    }
    return users.User(User{
        Username: user.Username,
        Email:    user.Email,
        IsActive: user.IsActive,
    }), nil
}

// UpdateUser updates an existing user in the database
func (d *Database) UpdateUser(ctx context.Context, updatedUser users.User, id uint) error {
    // Check if the user with the specified ID exists
    var existingUser User
    if err := d.Client.WithContext(ctx).Where("id = ?", id).First(&existingUser).Error; err != nil {
        return err
    }

    // Update the fields of the existing user with the new values
    existingUser.Username = updatedUser.Username
    existingUser.Email = updatedUser.Email
    existingUser.IsActive = updatedUser.IsActive

    // Save the updated user back to the database
    if err := d.Client.WithContext(ctx).Save(&existingUser).Error; err != nil {
        return err
    }

    return nil
}

// DeleteUser deletes a user from the database by their ID

func (d *Database) DeleteUser(ctx context.Context, id uint) error {
    // Check if the user with the specified ID exists
    var existingUser User
    if err := d.Client.WithContext(ctx).Where("id = ?", id).First(&existingUser).Error; err != nil {
        return err
    }

    // Delete the user from the database
    if err := d.Client.WithContext(ctx).Delete(&existingUser).Error; err != nil {
        return err
    }

    return nil
}

Your user implementation will call these functions to access the database functionality.

Step 2c: Writing the User Implementation

Your user implementation plays a significant role in relaying data from the database to the HTTP implementation.

You’ll define a struct that matches the struct in the database implementation and add JSON tags to the fields for usage; then, you’ll define functions that call the database functions with the data from the HTTP implementation.

Here are the imports you’ll need for your user implementation:

package users

import (
    "context"
    "gorm.io/gorm"
    "log"
)

Here’s the structure with JSON tags. The json:"-" in the gorm.Model field specifies that you want to exclude the field from the JSON operations.

// User -  a representation of the users of the wallet engine
type User struct {
    gorm.Model `json:"-"`
    Username   string `json:"username"`  
    Email      string `json:"email"`     
    IsActive   bool   `json:"is_active"` 
}

Next, you’ll declare an interface with methods for the user implementation functions, a service struct for the user implementation, and a function that initializes the service implementation.

type UserStore interface {
    CreateUser(context.Context, *User) error
    GetUserByID(context.Context, int64) (User, error)
    UpdateUser(context.Context, User, uint) error
    DeleteUser(context.Context, uint) error
}

// The UserService struct manages user-related operations outside the user implementation.
type UserService struct {
    Store UserStore // UserStore is an interface that abstracts the database operations.
}

// NewService creates a new service
func NewService(store UserStore) UserService {
    return UserService{
        Store: store,
    }
}

The interface and service will help manage user-related operations outside the user implementation.

Next, you can define methods of the UserService struct implementation that call the database implementation.

// CreateUser creates a new user by calling the CreateUser method on the associated UserStore.
func (u *UserService) CreateUser(ctx context.Context, user *User) error {
    if err := u.Store.CreateUser(ctx, user); err != nil {
        log.Printf("Error creating user: %v", err)
        return err
    }
    return nil
}

// GetUserByID retrieves a user by their ID using the GetUserByID method on the associated UserStore.
func (u *UserService) GetUserByID(ctx context.Context, id int64) (User, error) {
    user, err := u.Store.GetUserByID(ctx, id)
    if err != nil {
        log.Printf("Error fetching user with ID %v: %v", id, err)
        return user, err
    }
    return user, nil
}

// UpdateUser updates an existing user by calling the UpdateUser method on the associated UserStore.
func (u *UserService) UpdateUser(ctx context.Context, user User, id uint) error {
    if err := u.Store.UpdateUser(ctx, user, id); err != nil {
        log.Printf("Error updating user: %v", err)
        return err
    }

    return nil
}

// DeleteUser deletes a user by their ID using the DeleteUser method on the associated UserStore.
func (u *UserService) DeleteUser(ctx context.Context, id uint) error {
    if err := u.Store.DeleteUser(ctx, id); err != nil {
        log.Printf("Error deleting user: %v", err)
        return err
    }

    return nil
}

The CreateUser, GetUserByID, UpdateUser, and DeleteUser functions are responsible for calling the CRUD operations on the database implementation. The HTTP implementation will call these functions to access the database.

Step 2c: Writing the HTTP Implementation

The HTTP implementation is part of your application that receives and interacts with incoming requests.

Here’s the list of imports you’ll need across your HTTP implementation:

package http

import (
    "BetterApp/internal/users"
    "context"
    "github.com/gorilla/mux"
    "log"
    "net/http"
    "os"
    "os/signal"
    "syscall"
    "time"
    "encoding/json"
    "strconv"
)

First, declare a struct and include a Router instance, a HTTP instance, and an instance of the user service.

// internal/http/handler.go

type Handler struct {
    Router *mux.Router
    Users  users.UserService
    Server *http.Server
}

Then create a function that returns a pointer to the Handler struct, where you can configure the server and handlers.

// internal/http/handler.go

// NewHandler - returns a pointer to a Handler
func NewHandler(users users.UserService) *Handler {
    // Print a log message to indicate that we are setting up our handler
    log.Println("setting up our handler")

    // Create a new Handler instance and initialize it
    h := &Handler{
        Users: users, // Assign the provided users service to the handler's Users field
    }

    // Create a new HTTP router using the mux package
    h.Router = mux.NewRouter()

    // Map the routes for this handler (assuming this method exists and sets up routes)
    h.mapRoutes()

    // Create an HTTP server instance with specified settings
    h.Server = &http.Server{
        Addr:         "0.0.0.0:8080", // Set the server address to listen on
        WriteTimeout: time.Second * 15, // Set the maximum time to write the response
        ReadTimeout:  time.Second * 15, // Set the maximum time to read the request
        IdleTimeout:  time.Second * 60, // Set the maximum idle time
        Handler:      h.Router, // Set the router as the handler for incoming requests
    }

    // Return the initialized handler
    return h
}

The NewHandler function sets up and configures an HTTP request handler, making it ready to handle incoming HTTP requests for a specific service while also defining server settings and routes.

The mapRoutes function you called in the NewHandler function sets up routes by mapping them to their respective handler functions.

// internal/http/handler.go

// mapRoutes - sets up all the routes for our application
func (h *Handler) mapRoutes() {
    h.Router.HandleFunc("/api/v1/user/create", h.CreateUser).Methods("POST")
    h.Router.HandleFunc("/api/v1/users/{id}", h.GetUserByID).Methods("GET")
    h.Router.HandleFunc("/api/v1/users/{id}", h.UpdateUser).Methods("PUT")
    h.Router.HandleFunc("/api/v1/users/{id}", h.DeleteUser).Methods("DELETE")
}

Next, define the handler functions and their functionalities. Here are the CreateUser, GetUserByID, UpdateUser and DeleteUser functions that are responsible for intercepting HTTP requests and responding based on the operation.

// internal/http/users.go

// CreateUser decodes a User object from the HTTP request body and then tries to create a new user in the database using the CreateUser method of the UserService interface.
// If the user is successfully created, it encodes and sends the created user as a response.
func (h *Handler) CreateUser(writer http.ResponseWriter, request *http.Request) {
    // Decode the incoming JSON request body into a User struct
    var u users.User
    if err := json.NewDecoder(request.Body).Decode(&u); err != nil {
        // If decoding fails, respond with a Bad Request status and log the error
        http.Error(writer, "Failed to decode request body", http.StatusBadRequest)
        log.Println("Failed to decode request body:", err)
        return
    }

    // Try to create the user using the CreateUser method of UserService
    err := h.Users.CreateUser(request.Context(), &u)
    if err != nil {
        // If user creation fails, respond with an Internal Server Error status and log the error
        http.Error(writer, "Failed to create user", http.StatusInternalServerError)
        log.Println("Failed to create user:", err)
        return
    }

    // Set the response content type to JSON, set the status to Created, and encode and send the created user as the response
    writer.Header().Set("Content-Type", "application/json")
    writer.WriteHeader(http.StatusCreated)

    if err := json.NewEncoder(writer).Encode(u); err != nil {
        // If encoding the response fails, log the error (Panicln is used for critical errors)
        log.Panicln("Failed to encode response:", err)
    }
}

// GetUserByID extracts the id from the URL parameters and then fetches the user with that id from the database using the GetUserByID method of the UserService interface.
// If the user is found, it encodes and sends the user as a response.
func (h *Handler) GetUserByID(writer http.ResponseWriter, request *http.Request) {
    // Extract the 'id' parameter from the URL and convert it to an integer
    vars := mux.Vars(request)
    id, err := strconv.ParseInt(vars["id"], 10, 64)
    if err != nil {
        // If parsing the 'id' fails, respond with a Bad Request status and the error message
        http.Error(writer, err.Error(), http.StatusBadRequest)
        return
    }

    // Fetch the user with the given 'id' using the GetUserByID method of UserService
    u, err := h.Users.GetUserByID(request.Context(), id)
    if err != nil {
        // If fetching the user fails, log the error
        log.Println(err)
        return
    }

    // Encode and send the fetched user as the response
    if err := json.NewEncoder(writer).Encode(u); err != nil {
        // If encoding the response fails, log the error (Panicln is used for critical errors)
        log.Panicln(err)
    }
}

// UpdateUser updates a user by ID.
func (h *Handler) UpdateUser(writer http.ResponseWriter, request *http.Request) {
    // Extract the 'id' parameter from the URL and convert it to an integer
    vars := mux.Vars(request)
    id, err := strconv.ParseInt(vars["id"], 10, 64)
    if err != nil {
        // If parsing the 'id' fails, respond with a Bad Request status and the error message
        http.Error(writer, err.Error(), http.StatusBadRequest)
        return
    }

    // Decode the request body to get the updated user information
    var u users.User
    if err := json.NewDecoder(request.Body).Decode(&u); err != nil {
        // If decoding the request body fails, respond with a Bad Request status
        http.Error(writer, "Invalid request body", http.StatusBadRequest)
        return
    }

    // Update the user using the UpdateUser method of UserService
    err = h.Users.UpdateUser(request.Context(), u, uint(id))
    if err != nil {
        // If updating the user fails, respond with an Internal Server Error status and log the error
        http.Error(writer, "Failed to update user", http.StatusInternalServerError)
        log.Println(err)
        return
    }

    // Encode and send the updated user as the response
    if err := json.NewEncoder(writer).Encode(u); err != nil {
        // If encoding the response fails, respond with an Internal Server Error status and log the error (Panicln is used for critical errors)
        http.Error(writer, "Failed to encode response", http.StatusInternalServerError)
        log.Panicln(err)
    }
}

// DeleteUser deletes a user by ID.
func (h *Handler) DeleteUser(writer http.ResponseWriter, request *http.Request) {
    // Extract the 'id' parameter from the URL and convert it to an integer
    vars := mux.Vars(request)
    id, err := strconv.ParseInt(vars["id"], 10, 64)
    if err != nil {
        // If parsing the 'id' fails, respond with a Bad Request status and the error message
        http.Error(writer, err.Error(), http.StatusBadRequest)
        return
    }

    // Delete the user using the DeleteUser method of UserService
    err = h.Users.DeleteUser(request.Context(), uint(id))
    if err != nil {
        // If deleting the user fails, respond with an Internal Server Error status and log the error
        http.Error(writer, "Failed to delete user", http.StatusInternalServerError)
        log.Println(err)
        return
    }

    // Send a success response with a No Content status (204)
    writer.WriteHeader(http.StatusNoContent)
}

Now, you can write the functionality for starting the server.

// internal/http/handler.go

// Serve - gracefully serves our newly set up handler function
func (h *Handler) Serve() error {
        if err := h.Server.ListenAndServe(); err != nil {
            log.Println(err)
        }
}

The Serve function starts the server on the specified port and returns an error if there’s any during the process.

Step 2d: Coupling the Implementations and Running the Application

Import the implementations in your main.go file to couple the implementations and run your app.

package main

import (
    "BetterApp/internal/http"
    "BetterApp/internal/models"
    "BetterApp/internal/users"
    "fmt"
    "log"
)

You can declare a Run function that instantiates the startup of your app in the main.go file and then call the function in the main function.

//cmd/server/main.go

// Run - is going to be responsible for / the instantiation and startup of our / go application
func Run() error {
    fmt.Println("starting up the application...")

    // create a database instance variable
    store, err := models.NewDatabase()
    if err != nil {
        log.Println("Database Connection Failure")
        return err
    }

    // initialize the migrations functionality on the new database
    if err := store.MigrateDB(); err != nil {
        log.Println("failed to setup store migrations")
        return err
    }

    // set the database instance as the store for the user service implementation
    userService := users.NewService(store)

    // initialize a new handler with the user service 
    handler := http.NewHandler(userService)

    // call the serve function to start the server
    if err := handler.Serve(); err != nil {
        log.Println("failed to gracefully serve our application")
        return err
    }

    return nil

}

The Run function creates a database instance, initializes migrations functionality, initializes the HTTP and User implementations and starts the server.

You can call the Run function in the main function to launch your application.

//cmd/server/main.go

func main() {
    fmt.Println("Go REST API Tutorial")
    if err := Run(); err != nil {
        log.Println(err)
    }

}

The application should run fine before you consider containerizing it with Docker.

Step3: Writing the Dockerfile

Now that you’ve successfully built and ran the program, you can proceed to containerize it with Docker.

Your Dockerfile will have two stages, the build and final stage. This approach reduces image size, minimizes security risks by reducing the attack surface, ensures efficient runtime performance, and facilitates reproducibility across different development and deployment stages.

You’ll also use Alpine Linux as the base image of your Docker images since they’re more efficient and secure with minimalist design results in smaller image sizes, faster builds, and reduced attack surfaces.

Step 3a: The Build Stage

Using the build and final stages in a Dockerfile allows for the efficient creation of Docker images. The build stage starts with a base image containing build tools and dependencies, compiles application artifacts, and generates a potentially large intermediate image.

Here’s the contents of the Dockerfile for the Build Stage:

# Build stage
FROM golang:1.20-alpine AS build

# Set the working directory inside the container
WORKDIR /app

# Copy the Go application source code into the container
COPY . .

# Build the Go application
RUN go build -o server ./cmd/server
  1. FROM golang:1.20-alpine AS build: This line specifies the base image for the build stage. It starts with the official Golang Docker image tagged with version 1.20 and is based on Alpine Linux. The AS build part gives this stage a name, "build" that you can reference later.
  2. WORKDIR /app: This line sets the working directory inside the container to /app. Docker will execute subsequent commands in this directory.
  3. COPY . .: This command copies the contents of the current directory (presumably your Go application source code and other necessary files) into the /app directory inside the container.
  4. RUN go build -o server ./cmd/server: This is the command that builds the Go application. It uses the go build command to compile the Go code in the current directory and output the binary as server. The ./cmd/server argument is the location of the application code relative to the /app directory.

Step 3b: The Final Stage

The final stage employs a smaller base image, copies only necessary runtime components, and results in a compact image optimized for production.

Here are the contents of your Dockerfile for the final stage:

# Final stage
FROM alpine:latest

# Set the working directory inside the final container
WORKDIR /app

# Copy the binary built in the previous stage
COPY --from=build /app/server .

# Expose the port your application will listen on (adjust as needed)
EXPOSE 8080

# Run your Go application
CMD ["./server"]
  1. FROM alpine:latest: In the final stage, you can start with an Alpine Linux base image, The latest tag specifies the latest available version of Alpine Linux.
  2. WORKDIR /app: This line sets the working directory inside the container to /app. Docker will execute subsequent commands in this directory.
  3. COPY --from=build /app/server .: This command copies the binary file named server from the previous "build stage" into the /app directory inside the final container. This binary is the compiled Go application that you built in the build stage.
  4. EXPOSE 8080: Here, you specify that your application will listen on port 8080. This is a declaration and does not actually open the port; it's a way to document which port your application expects to use.
  5. CMD ["./server"]: This command will be executed when you run a container based on the image. It specifies running the server binary, which is your Go application. This command starts your application inside the container.

Step 4: Building and Running the Docker Image

After Writing the Dockerfile, you can proceed to build and run the file.
Run this command to build the Docker image from the file with the build command.

docker build -t betterapp .

The -t flag specifies the tag for the Docker image as betterapp and the following dot (.) specifies that you want to build the Dockerfile in the current directory.

You can run the image with the run command and specify a port mapping from the container to your host machine with the -p flag.

docker run -p 8080:8080 \
  -e DB_HOST=ep-silent-dew-52667493-pooler.us-east-2.aws.neon.tech \
  -e DB_PORT=5432 \
  -e DB_USERNAME=Goodnessuc \
  -e DB_PASSWORD=foOEky9F2reG \
  -e DB_NAME=neondb \
  -e SSL_MODE=require \
  betterapp

The subsequent -e flags are for specifying environment variables since for your application.

Step 5: Deploying Go Applications with Docker

Docker Compose is a container orchestration tool that simplifies working with multiple Docker containers. You can use Docker compose to orchestrate your Go apps and their components.

You’ll use a YAML file to specify the instruction and Docker compose will setup your applications to save you time and complexity.

First, create a Docker Compose YAML file with the command below and open the file in your editor:

touch docker-compose.yml

After creating the Dockerfile, you can start writing the commands and directives for deploying your app:

version: "3.8"

services:
  db:
    image: postgres:12.2-alpine
    container_name: "betterapp"
    ports:
      - "5433:5432"
    environment:
      - POSTGRES_DB=postgres
      - POSTGRES_USER=postgres
      - POSTGRES_PASSWORD=postgres
    networks:
      - fullstack
    volumes:
      - database_postgres:/var/lib/postgresql/data

  api:
    build: .
    container_name: "betterapp-rest-api"
    environment:
      DB_USERNAME: "postgres"
      DB_PASSWORD: "postgres"
      DB_DB: "postgres"
      DB_HOST: "db"
      DB_TABLE: "postgres"
      DB_PORT: "5432"
      SSL_MODE: "disable"
    ports:
      - "8080:8080"
    depends_on:
      - db
    networks:
      - fullstack

volumes:
  database_postgres:

networks:
  fullstack:
    driver: bridge

The YAML file defines two services: my-postgres which is the database container instance and the web service, which is your Go application before configuring their environment variables, ports, and dependencies.

Now, you can proceed to build the images with the docker-compose build command.

docker-compose build

Your output should be similar to this:

How to Deploy Go Applications With Docker

Finally, you can run your containers with the docker-compose up command.

docker-compose up -d

The -d flag runs the containers in detached mode which makes it agnostic of the terminal session.

Here’s the result of running the command:

How to Deploy Go Applications With Docker

You can close your terminal, and the container should continue running.

You can run the CURL requests to test your API once the containers are up:

# Create a new user
# POST /api/v1/user/create
curl -X POST \
     -H "Content-Type: application/json" \
     -d '{"username": "alice_smith", "email": "[email protected]", "is_active": true}' \
     http://localhost:8080/api/v1/user/create

# Get user by ID
# Assuming the user ID of Alice Smith is 2
# GET /api/v1/users/{id}
curl -X GET http://localhost:8080/api/v1/users/1

# Update user by ID
# Let's update Alice Smith's username and email address
# PUT /api/v1/users/{id}
curl -X PUT \
     -H "Content-Type: application/json" \
     -d '{"username": "alice_wonder", "email": "[email protected]", "is_active": true}' \
     http://localhost:8080/api/v1/users/1

# Delete user by ID
# DELETE /api/v1/users/{id}
curl -X DELETE http://localhost:8080/api/v1/users/1

Congratulations, you’ve successfully deployed and run a working Go app with Docker and Docker Compose.

Conclusion

You’ve learned how to build and simplify your Go app’s deployment with Docker and Docker Compose. As you continue on your development journey, the skills and understanding you've gained here will prove to be essential assets in ensuring smooth deployments and operational excellence.

Consider exploring advanced Docker features like optimizing Dockerfile builds or implementing Docker Swarm for larger applications.

版本声明 本文转载于:https://dev.to/goodylili/how-to-deploy-go-applications-with-docker-50n3?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 大批
    大批
    方法是可以在对象上调用的 fns 数组是对象,因此它们在 JS 中也有方法。 slice(begin):将数组的一部分提取到新数组中,而不改变原始数组。 let arr = ['a','b','c','d','e']; // Usecase: Extract till index p...
    编程 发布于2024-11-09
  • 如何修复 macOS 上 Django 中的“配置不正确:加载 MySQLdb 模块时出错”?
    如何修复 macOS 上 Django 中的“配置不正确:加载 MySQLdb 模块时出错”?
    MySQL配置不正确:相对路径的问题在Django中运行python manage.py runserver时,可能会遇到以下错误:ImproperlyConfigured: Error loading MySQLdb module: dlopen(/Library/Python/2.7/site-...
    编程 发布于2024-11-09
  • 如何增加 PHP 最大 POST 变量限制?
    如何增加 PHP 最大 POST 变量限制?
    PHP最大POST变量限制处理具有大量输入字段的POST请求时,当变量数量超过默认值时,会出现常见问题PHP 中的限制。例如,超过 1000 个字段的表单可能只公开 $_POST 数组中的前 1001 个变量。要解决此问题,需要调整 PHP 允许的 POST 变量的最大数量。在版本 5.3.9 中引...
    编程 发布于2024-11-09
  • 如何防止 Pandas 在保存 CSV 时添加索引列?
    如何防止 Pandas 在保存 CSV 时添加索引列?
    避免使用 Pandas 保存的 CSV 中的索引列使用 Pandas 进行修改后保存 csv 文件时,默认行为是包含索引列。为了避免这种情况,可以在使用 to_csv() 方法时将索引参数设置为 False。为了详细说明,请考虑以下命令序列:pd.read_csv('C:/Path/to/file....
    编程 发布于2024-11-09
  • 为什么 OpenX 仪表板显示“错误 330 (net::ERR_CONTENT_DECODING_FAILED)”?
    为什么 OpenX 仪表板显示“错误 330 (net::ERR_CONTENT_DECODING_FAILED)”?
    错误 330 (net::ERR_CONTENT_DECODING_FAILED):解开压缩问题遇到神秘的“错误 330 (net::ERR_CONTENT_DECODING_FAILED)” “在导航到仪表板页面时,必须深入研究根本原因。当 Web 服务器错误识别 HTTP 请求中使用的内容压缩方...
    编程 发布于2024-11-09
  • 除了“if”语句之外:还有哪些地方可以在不进行强制转换的情况下使用具有显式“bool”转换的类型?
    除了“if”语句之外:还有哪些地方可以在不进行强制转换的情况下使用具有显式“bool”转换的类型?
    无需强制转换即可上下文转换为 bool您的类定义了对 bool 的显式转换,使您能够在条件语句中直接使用其实例“t”。然而,这种显式转换提出了一个问题:“t”在哪里可以在不进行强制转换的情况下用作 bool?上下文转换场景C 标准指定了四种值可以根据上下文转换为的主要场景bool:语句:if、whi...
    编程 发布于2024-11-09
  • 如何在Java中使用堆栈将算术表达式解析为树结构?
    如何在Java中使用堆栈将算术表达式解析为树结构?
    在 Java 中将算术表达式解析为树结构从算术表达式创建自定义树可能是一项具有挑战性的任务,特别是在确保树结构时准确反映表达式的操作和优先级。要实现这一点,一种有效的方法是使用堆栈。以下是该过程的逐步描述:初始化:从空堆栈开始。处理令牌:迭代表达式中的每个标记:如果标记是左括号,则压入它如果 tok...
    编程 发布于2024-11-09
  • 在 Go 中使用 WebSocket 进行实时通信
    在 Go 中使用 WebSocket 进行实时通信
    构建需要实时更新的应用程序(例如聊天应用程序、实时通知或协作工具)需要一种比传统 HTTP 更快、更具交互性的通信方法。这就是 WebSockets 发挥作用的地方!今天,我们将探讨如何在 Go 中使用 WebSocket,以便您可以向应用程序添加实时功能。 在这篇文章中,我们将介绍: WebSoc...
    编程 发布于2024-11-09
  • 如何进行有替换和无替换的有效加权随机选择?
    如何进行有替换和无替换的有效加权随机选择?
    带替换和不带替换的加权随机选择为了应对编程挑战,我们寻求从列表中进行加权随机选择的有效算法, 带替换的加权选择一种有效的方法带替换的加权选择是别名方法。该技术为每个加权元素创建一组相同大小的箱。通过利用位操作,我们可以有效地索引这些容器,而无需诉诸二分搜索。每个 bin 存储一个百分比,表示原始加权...
    编程 发布于2024-11-09
  • 如何在不依赖框架的情况下确定 DOM 准备情况?
    如何在不依赖框架的情况下确定 DOM 准备情况?
    Document.isReady:DOM 就绪检测的本机解决方案依赖于 Prototype 和 jQuery 等框架来管理 window.onload 事件可能不会总是令人向往。本文探讨了确定 DOM 就绪情况的替代方法,特别是通过使用 document.isReady.查询 Document.is...
    编程 发布于2024-11-09
  • 如何在 Golang 中检索 XML 数组中的所有元素而不仅限于第一个元素?
    如何在 Golang 中检索 XML 数组中的所有元素而不仅限于第一个元素?
    在 XML 中解组数组元素:检索所有元素,而不仅仅是第一个当使用 xml.Unmarshal( 在 Golang 中解组 XML 数组时[]byte(p.Val.Inner), &t),您可能会遇到仅检索第一个元素的情况。要解决此问题,请利用 xml.Decoder 并重复调用其 Decode 方法...
    编程 发布于2024-11-09
  • 带有管理面板的轻量级 Rest Api,可轻松管理食物食谱。
    带有管理面板的轻量级 Rest Api,可轻松管理食物食谱。
    你好, ?所有这篇文章都是关于我刚刚在 Github 上发布的 Django Rest Framework API。 如果您正在寻找一些简单而高效的 API 来从管理面板管理食物食谱并将其返回以供客户端使用,那么此存储库适合您。 该代码是轻量级的,可以在任何低功耗迷你 PC(如 Raspberry...
    编程 发布于2024-11-09
  • 如何使用正则表达式匹配带有或不带有可选 HTTP 和 WWW 前缀的 URL?
    如何使用正则表达式匹配带有或不带有可选 HTTP 和 WWW 前缀的 URL?
    使用可选 HTTP 和 WWW 前缀匹配 URL正则表达式是执行复杂模式匹配任务的强大工具。当涉及到匹配 URL 时,格式通常会有所不同,例如是否包含“http://www”。 使用正则表达式的解决方案匹配带或不带“http://www”的 URL。前缀,可以使用以下正则表达式:((https?|f...
    编程 发布于2024-11-09
  • 如何在不依赖扩展名的情况下确定文件类型?
    如何在不依赖扩展名的情况下确定文件类型?
    如何在不依赖扩展名的情况下检测文件类型除了检查文件的扩展名之外,确定文件是 mp3 还是图像格式是很有价值的编程中的任务。这是一个不依赖扩展的全面解决方案:PHP >= 5.3:$mimetype = finfo_fopen(fopen($filename, 'r'), FILEINFO_MIME_...
    编程 发布于2024-11-09
  • 在 JavaScript 中实现斐波那契数列:常见方法和变体
    在 JavaScript 中实现斐波那契数列:常见方法和变体
    作为开发人员,您可能遇到过编写函数来计算斐波那契数列中的值的任务。这个经典问题经常出现在编码面试中,通常要求递归实现。然而,面试官有时可能会要求具体的方法。在本文中,我们将探讨 JavaScript 中最常见的斐波那契数列实现。 什么是斐波那契数列? 首先,让我们回顾一下。斐波那契数...
    编程 发布于2024-11-09

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3