”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 如何创建人类水平的自然语言理解 (NLU) 系统

如何创建人类水平的自然语言理解 (NLU) 系统

发布于2024-11-05
浏览:905

How to create a Human-Level Natural Language Understanding (NLU) System

Scope: Creating an NLU system that fully understands and processes human languages in a wide range of contexts, from conversations to literature.

Challenges:

  • Natural language is highly ambiguous, so creating models that resolve meaning in context is complex.
  • Developing models for multiple languages and dialects.
  • Ensuring systems understand cultural nuances, idiomatic expressions, and emotions.
  • Training on massive datasets and ensuring high accuracy.

To create a Natural Language Understanding (NLU) system that fully comprehends and processes human languages across contexts, the design process needs to tackle both the theoretical and practical challenges of language, context, and computing. Here's a thinking process that can guide the development of such a system:

1. Understanding the Problem: Scope and Requirements

  • Define Objectives: Break down what "understanding" means in various contexts. Does the system need to understand conversation, literature, legal text, etc.?
  • Identify Use Cases: Specify where the NLU will be applied (e.g., conversational agents, content analysis, or text-based decision-making).
  • Establish Constraints: Determine what resources are available, what level of accuracy is required, and what trade-offs will be acceptable (speed vs. accuracy, for instance).

    2. Data Collection: Building the Knowledge Base

  • Multilingual and Multidomain Corpora: Collect vast amounts of text from multiple languages and various domains like literature, technical writing, legal documents, informal text (e.g., tweets), and conversational transcripts.

  • Contextual Data: Language is understood in context. Collect meta-data such as the speaker's background, time period, cultural markers, sentiment, and tone.

  • Annotations: Manually annotate datasets with syntactic, semantic, and pragmatic information to train the system on ambiguity, idioms, and context.

    3. Developing a Theoretical Framework

  • Contextual Language Models: Leverage transformer models like GPT, BERT, or even specialized models like mBERT (multilingual BERT) for handling context-specific word embeddings. Incorporate memory networks or long-term dependencies so the system can remember previous conversations or earlier parts of a text.

  • Language and Culture Modeling: Transfer Learning: Use transfer learning to apply models trained on one language or context to another. For instance, a model trained on English literature can help understand the structure of French literature with proper fine-tuning.

  • Cross-Language Embeddings: Utilize models that map words and phrases into a shared semantic space, enabling the system to handle multiple languages at once.

  • Cultural and Emotional Sensitivity: Create sub-models or specialized attention layers to detect cultural references, emotions, and sentiment from specific regions or contexts.

4. Addressing Ambiguity and Pragmatic Understanding

  • Disambiguation Mechanisms: Supervised Learning: Train the model on ambiguous sentences (e.g., "bank" meaning a financial institution vs. a riverbank) and provide annotated resolutions.
  • Contextual Resolution: Use attention mechanisms to give more weight to recent conversational or textual context when interpreting ambiguous words.
  • Pragmatics and Speech Acts: Build a framework for pragmatic understanding (i.e., not just what is said but what is meant). Speech acts, like promises, requests, or questions, can be modeled using reinforcement learning to better understand intentions.

    5. Dealing with Idioms and Complex Expressions

  • Idiom Recognition: Collect idiomatic expressions from multiple languages and cultures. Train the model to recognize idioms not as compositional phrases but as whole entities with specific meanings. Apply pattern-matching techniques to identify idiomatic usage in real-time.

  • Metaphor and Humor Detection: Create sub-networks trained on metaphors and humor. Use unsupervised learning to detect non-literal language and assign alternative interpretations.

    6. Handling Large Datasets and Model Training

  • Data Augmentation: Leverage techniques like back-translation (translating data to another language and back) or paraphrasing to increase the size and diversity of datasets.

  • Multi-task Learning: Train the model on related tasks (like sentiment analysis, named entity recognition, and question answering) to help the system generalize better across various contexts.

  • Efficiency and Scalability: Use distributed computing and specialized hardware (GPUs, TPUs) for large-scale training. Leverage pruning, quantization, and model distillation to reduce model size while maintaining performance.

    7. Incorporating External Knowledge

  • Knowledge Graphs: Integrate external knowledge bases like Wikipedia, WordNet, or custom databases to provide the model with real-world context.

  • Commonsense Reasoning: Use models like COMET (Commonsense Transformers) to integrate reasoning about cause-and-effect, everyday events, and general knowledge.

    8. Real-World Contextual Adaptation

  • Fine-Tuning and Continuous Learning: Implement techniques for continuous learning so that the model can evolve with time and adapt to new languages, cultural changes, and evolving linguistic expressions. Fine-tune models on user-specific or region-specific data to make the system more culturally aware and contextually relevant.

  • Zero-Shot and Few-Shot Learning: Develop zero-shot learning capabilities, allowing the system to make educated guesses on tasks or languages it hasn’t been explicitly trained on. Few-shot learning can be used to rapidly adapt to new dialects, idioms, or cultural nuances with minimal new training data.

    9. Evaluation and Iteration

  • Cross-Language Accuracy Metrics: Create benchmarks that test the system's ability to handle multiple languages and dialects, including edge cases (idioms, rare phrases, obscure language use).

  • Error Analysis: Systematically track and analyze errors related to ambiguity, sentiment misclassification, idiomatic misinterpretation, and context loss. Constantly refine models to improve understanding.

  • Human-in-the-Loop Systems: Include mechanisms for humans to intervene when the system encounters difficult-to-interpret text or when it fails. This feedback will guide iterative improvements.

    10. Ethical Considerations and Bias Mitigation

  • Bias Detection: Regularly check for biases related to gender, race, and cultural issues. Biases in data can result in skewed NLU interpretations.

  • Ethical Language Usage: Ensure that the system can identify and address ethically sensitive topics, such as hate speech or misinformation.

  • Explainability: Incorporate models that offer transparent decision-making to ensure the NLU’s reasoning can be explained and corrected if necessary.

    11. Deployment and Continuous Maintenance

  • Integration: Seamlessly integrate the NLU into various applications (chatbots, content analysis tools, sentiment analysis engines).

  • Monitoring: Implement monitoring tools to measure the system's performance over time and in new linguistic environments.

  • Continuous Data Input: Set up feedback loops where the system can learn from interactions in the wild and improve its understanding through active learning.

This step-by-step process is an iterative, evolving approach that balances linguistic theory, computational power, and practical constraints. Building a system of this scale will require extensive collaboration across linguistics, machine learning, and computational infrastructure.

Creating a complete Natural Language Understanding (NLU) system that works in the way described would require thousands of lines of code and a complex architecture. However, I can give you a simplified framework for building a basic NLU system in Python that incorporates some of the key elements. For this, we’ll break it down into smaller components that could be expanded upon over time.

Here is a basic code structure using popular machine learning and NLP libraries such as transformers, spaCy, and nltk. This will provide a foundation for the larger system.

1. Installing Dependencies

First, you’ll need to install some dependencies:

pip install transformers torch spacy nltk
python -m spacy download en_core_web_sm

2. Basic Structure of NLU System

We'll start with:

  • Loading Pre-trained Models for language understanding (e.g., BERT).
  • Contextual Analysis using spaCy and nltk for parsing sentences.
  • Sentiment Analysis as an example task.
import torch
from transformers import BertTokenizer, BertForSequenceClassification
import spacy
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer

# Load pre-trained models
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

# Load spaCy for NLP
nlp = spacy.load('en_core_web_sm')

# NLTK for sentiment analysis
nltk.download('vader_lexicon')
sia = SentimentIntensityAnalyzer()

# Function to analyze text with BERT
def analyze_text_with_bert(text):
    inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    return predictions

# Function for syntactic analysis using spaCy
def syntactic_analysis(text):
    doc = nlp(text)
    for token in doc:
        print(f'{token.text}: {token.dep_} ({token.head.text})')

# Function for sentiment analysis using NLTK
def sentiment_analysis(text):
    sentiment_scores = sia.polarity_scores(text)
    print(f"Sentiment: {sentiment_scores}")

# Basic function to combine different analyses
def nlu_system(text):
    print(f"Analyzing: {text}\n")

    # Syntactic Analysis
    print("Syntactic Analysis (spaCy):")
    syntactic_analysis(text)

    # Sentiment Analysis
    print("\nSentiment Analysis (NLTK):")
    sentiment_analysis(text)

    # BERT Analysis (classification)
    print("\nBERT-based Text Analysis:")
    predictions = analyze_text_with_bert(text)
    print(f"Predictions: {predictions}")

# Example usage
if __name__ == "__main__":
    sample_text = "The movie was fantastic, but the ending was a bit disappointing."
    nlu_system(sample_text)

3. Explanation of the Code

Components:

  1. BERT-based Analysis:

    • The analyze_text_with_bert function uses a pre-trained BERT model for sequence classification (e.g., sentiment analysis, question answering, or general text classification).
    • It tokenizes the input text and uses a BERT model to analyze it, returning the output predictions.
  2. Syntactic Analysis with spaCy:

    • The syntactic_analysis function uses spaCy to parse the input text and provide a dependency tree, identifying syntactic relationships between words (subject, object, verb, etc.).
  3. Sentiment Analysis with NLTK:

    • The sentiment_analysis function uses NLTK’s VADER model for basic sentiment analysis (positive, negative, neutral).
  4. NLU System:

    • The nlu_system function combines these components and outputs the analysis for a given piece of text.

4. Scaling Up the System

To build the system as described in your earlier inquiry, you would need to:

  • Expand the BERT model to handle multi-task learning, such as Named Entity Recognition (NER), Question Answering, and Text Summarization.
  • Fine-tune models on specific datasets to handle domain-specific text and multi-lingual contexts.
  • Add Pragmatics: Implement specific logic for cultural nuances and idiomatic expressions. This may involve custom datasets or specific attention mechanisms in your transformer models.
  • Integrate Knowledge Graphs to provide real-world context to the NLU system. This could be done by adding knowledge retrieval functions from external sources like Wikidata or custom-built knowledge graphs.
  • Continuous Learning: Incorporate reinforcement learning techniques to allow the system to adapt to new text as it interacts with users.

This basic framework provides the backbone for larger, more complex NLU tasks, and you can grow it by implementing more specific models, handling additional languages, and introducing components like contextual memory or dialogue systems.

Advanced NLU at Advanced NLU Integration

版本声明 本文转载于:https://dev.to/kavya-sahai-god/how-to-create-a-human-level-natural-language-understanding-nlu-system-3gmp?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 可以在纯CS中将多个粘性元素彼此堆叠在一起吗?
    可以在纯CS中将多个粘性元素彼此堆叠在一起吗?
    [2这里: https://webthemez.com/demo/sticky-multi-header-scroll/index.html </main> <section> { display:grid; grid-template-...
    编程 发布于2025-03-10
  • 大批
    大批
    [2 数组是对象,因此它们在JS中也具有方法。 切片(开始):在新数组中提取部分数组,而无需突变原始数组。 令ARR = ['a','b','c','d','e']; // USECASE:提取直到索引作...
    编程 发布于2025-03-10
  • 如何干净地删除匿名JavaScript事件处理程序?
    如何干净地删除匿名JavaScript事件处理程序?
    删除匿名事件侦听器将匿名事件侦听器添加到元素中会提供灵活性和简单性,但是当要删除它们时,可以构成挑战,而无需替换元素本身就可以替换一个问题。 element? element.addeventlistener(event,function(){/在这里工作/},false); 要解决此问题,请考虑...
    编程 发布于2025-03-10
  • 如何克服PHP的功能重新定义限制?
    如何克服PHP的功能重新定义限制?
    克服PHP的函数重新定义限制在PHP中,多次定义一个相同名称的函数是一个no-no。尝试这样做,如提供的代码段所示,将导致可怕的“不能重新列出”错误。 但是,PHP工具腰带中有一个隐藏的宝石:runkit扩展。它使您能够灵活地重新定义函数。 runkit_function_renction_re...
    编程 发布于2025-03-10
  • 如何使用PHP将斑点(图像)正确插入MySQL?
    如何使用PHP将斑点(图像)正确插入MySQL?
    essue VALUES('$this->image_id','file_get_contents($tmp_image)')";This code builds a string in PHP, but the function call ...
    编程 发布于2025-03-10
  • 如何使用替换指令在GO MOD中解析模块路径差异?
    如何使用替换指令在GO MOD中解析模块路径差异?
    在使用GO MOD时,在GO MOD 中克服模块路径差异时,可能会遇到冲突,其中3个Party Package将另一个PAXPANCE带有导入式套件之间的另一个软件包,并在导入式套件之间导入另一个软件包。如回声消息所证明的那样: go.etcd.io/bbolt [&&&&&&&&&&&&&&&&...
    编程 发布于2025-03-10
  • 为什么使用Firefox后退按钮时JavaScript执行停止?
    为什么使用Firefox后退按钮时JavaScript执行停止?
    导航历史记录问题:JavaScript使用Firefox Back Back 此行为是由浏览器缓存JavaScript资源引起的。要解决此问题并确保在后续页面访问中执行脚本,Firefox用户应设置一个空功能。 警报'); }; alert('inline Alert')...
    编程 发布于2025-03-10
  • HTML格式标签
    HTML格式标签
    HTML 格式化元素 **HTML Formatting is a process of formatting text for better look and feel. HTML provides us ability to format text without us...
    编程 发布于2025-03-10
  • 我可以将加密从McRypt迁移到OpenSSL,并使用OpenSSL迁移MCRYPT加密数据?
    我可以将加密从McRypt迁移到OpenSSL,并使用OpenSSL迁移MCRYPT加密数据?
    将我的加密库从mcrypt升级到openssl 问题:是否可以将我的加密库从McRypt升级到OpenSSL?如果是这样,如何?答案:是的,可以将您的Encryption库从McRypt升级到OpenSSL。可以使用openssl。附加说明: [openssl_decrypt()函数要求iv参...
    编程 发布于2025-03-10
  • 如何使用PHP从XML文件中有效地检索属性值?
    如何使用PHP从XML文件中有效地检索属性值?
    从php $xml = simplexml_load_file($file); foreach ($xml->Var[0]->attributes() as $attributeName => $attributeValue) { echo $attributeName,...
    编程 发布于2025-03-10
  • 版本5.6.5之前,使用current_timestamp与时间戳列的current_timestamp与时间戳列有什么限制?
    版本5.6.5之前,使用current_timestamp与时间戳列的current_timestamp与时间戳列有什么限制?
    在时间戳列上使用current_timestamp或MySQL版本中的current_timestamp或在5.6.5 此限制源于遗留实现的关注,这些限制需要对当前的_timestamp功能进行特定的实现。 创建表`foo`( `Productid` int(10)unsigned not n...
    编程 发布于2025-03-10
  • 如何使用FormData()处理多个文件上传?
    如何使用FormData()处理多个文件上传?
    )处理多个文件输入时,通常需要处理多个文件上传时,通常是必要的。 The fd.append("fileToUpload[]", files[x]); method can be used for this purpose, allowing you to send multi...
    编程 发布于2025-03-10
  • 如何使用Regex在PHP中有效地提取括号内的文本
    如何使用Regex在PHP中有效地提取括号内的文本
    php:在括号内提取文本在处理括号内的文本时,找到最有效的解决方案是必不可少的。一种方法是利用PHP的字符串操作函数,如下所示: 作为替代 $ text ='忽略除此之外的一切(text)'; preg_match('#((。 &&& [Regex使用模式来搜索特...
    编程 发布于2025-03-10
  • 如何使用组在MySQL中旋转数据?
    如何使用组在MySQL中旋转数据?
    在关系数据库中使用mySQL组使用mySQL组进行查询结果,在关系数据库中使用MySQL组,转移数据的数据是指重新排列的行和列的重排以增强数据可视化。在这里,我们面对一个共同的挑战:使用组的组将数据从基于行的基于列的转换为基于列。让我们考虑以下查询: select data d.data_ti...
    编程 发布于2025-03-10
  • 如何使用Java.net.urlConnection和Multipart/form-data编码使用其他参数上传文件?
    如何使用Java.net.urlConnection和Multipart/form-data编码使用其他参数上传文件?
    使用http request 上传文件上传到http server,同时也提交其他参数,java.net.net.urlconnection and Multipart/form-data Encoding是普遍的。 Here's a breakdown of the process:Mu...
    编程 发布于2025-03-10

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3