”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 如何创建人类水平的自然语言理解 (NLU) 系统

如何创建人类水平的自然语言理解 (NLU) 系统

发布于2024-11-05
浏览:661

How to create a Human-Level Natural Language Understanding (NLU) System

Scope: Creating an NLU system that fully understands and processes human languages in a wide range of contexts, from conversations to literature.

Challenges:

  • Natural language is highly ambiguous, so creating models that resolve meaning in context is complex.
  • Developing models for multiple languages and dialects.
  • Ensuring systems understand cultural nuances, idiomatic expressions, and emotions.
  • Training on massive datasets and ensuring high accuracy.

To create a Natural Language Understanding (NLU) system that fully comprehends and processes human languages across contexts, the design process needs to tackle both the theoretical and practical challenges of language, context, and computing. Here's a thinking process that can guide the development of such a system:

1. Understanding the Problem: Scope and Requirements

  • Define Objectives: Break down what "understanding" means in various contexts. Does the system need to understand conversation, literature, legal text, etc.?
  • Identify Use Cases: Specify where the NLU will be applied (e.g., conversational agents, content analysis, or text-based decision-making).
  • Establish Constraints: Determine what resources are available, what level of accuracy is required, and what trade-offs will be acceptable (speed vs. accuracy, for instance).

    2. Data Collection: Building the Knowledge Base

  • Multilingual and Multidomain Corpora: Collect vast amounts of text from multiple languages and various domains like literature, technical writing, legal documents, informal text (e.g., tweets), and conversational transcripts.

  • Contextual Data: Language is understood in context. Collect meta-data such as the speaker's background, time period, cultural markers, sentiment, and tone.

  • Annotations: Manually annotate datasets with syntactic, semantic, and pragmatic information to train the system on ambiguity, idioms, and context.

    3. Developing a Theoretical Framework

  • Contextual Language Models: Leverage transformer models like GPT, BERT, or even specialized models like mBERT (multilingual BERT) for handling context-specific word embeddings. Incorporate memory networks or long-term dependencies so the system can remember previous conversations or earlier parts of a text.

  • Language and Culture Modeling: Transfer Learning: Use transfer learning to apply models trained on one language or context to another. For instance, a model trained on English literature can help understand the structure of French literature with proper fine-tuning.

  • Cross-Language Embeddings: Utilize models that map words and phrases into a shared semantic space, enabling the system to handle multiple languages at once.

  • Cultural and Emotional Sensitivity: Create sub-models or specialized attention layers to detect cultural references, emotions, and sentiment from specific regions or contexts.

4. Addressing Ambiguity and Pragmatic Understanding

  • Disambiguation Mechanisms: Supervised Learning: Train the model on ambiguous sentences (e.g., "bank" meaning a financial institution vs. a riverbank) and provide annotated resolutions.
  • Contextual Resolution: Use attention mechanisms to give more weight to recent conversational or textual context when interpreting ambiguous words.
  • Pragmatics and Speech Acts: Build a framework for pragmatic understanding (i.e., not just what is said but what is meant). Speech acts, like promises, requests, or questions, can be modeled using reinforcement learning to better understand intentions.

    5. Dealing with Idioms and Complex Expressions

  • Idiom Recognition: Collect idiomatic expressions from multiple languages and cultures. Train the model to recognize idioms not as compositional phrases but as whole entities with specific meanings. Apply pattern-matching techniques to identify idiomatic usage in real-time.

  • Metaphor and Humor Detection: Create sub-networks trained on metaphors and humor. Use unsupervised learning to detect non-literal language and assign alternative interpretations.

    6. Handling Large Datasets and Model Training

  • Data Augmentation: Leverage techniques like back-translation (translating data to another language and back) or paraphrasing to increase the size and diversity of datasets.

  • Multi-task Learning: Train the model on related tasks (like sentiment analysis, named entity recognition, and question answering) to help the system generalize better across various contexts.

  • Efficiency and Scalability: Use distributed computing and specialized hardware (GPUs, TPUs) for large-scale training. Leverage pruning, quantization, and model distillation to reduce model size while maintaining performance.

    7. Incorporating External Knowledge

  • Knowledge Graphs: Integrate external knowledge bases like Wikipedia, WordNet, or custom databases to provide the model with real-world context.

  • Commonsense Reasoning: Use models like COMET (Commonsense Transformers) to integrate reasoning about cause-and-effect, everyday events, and general knowledge.

    8. Real-World Contextual Adaptation

  • Fine-Tuning and Continuous Learning: Implement techniques for continuous learning so that the model can evolve with time and adapt to new languages, cultural changes, and evolving linguistic expressions. Fine-tune models on user-specific or region-specific data to make the system more culturally aware and contextually relevant.

  • Zero-Shot and Few-Shot Learning: Develop zero-shot learning capabilities, allowing the system to make educated guesses on tasks or languages it hasn’t been explicitly trained on. Few-shot learning can be used to rapidly adapt to new dialects, idioms, or cultural nuances with minimal new training data.

    9. Evaluation and Iteration

  • Cross-Language Accuracy Metrics: Create benchmarks that test the system's ability to handle multiple languages and dialects, including edge cases (idioms, rare phrases, obscure language use).

  • Error Analysis: Systematically track and analyze errors related to ambiguity, sentiment misclassification, idiomatic misinterpretation, and context loss. Constantly refine models to improve understanding.

  • Human-in-the-Loop Systems: Include mechanisms for humans to intervene when the system encounters difficult-to-interpret text or when it fails. This feedback will guide iterative improvements.

    10. Ethical Considerations and Bias Mitigation

  • Bias Detection: Regularly check for biases related to gender, race, and cultural issues. Biases in data can result in skewed NLU interpretations.

  • Ethical Language Usage: Ensure that the system can identify and address ethically sensitive topics, such as hate speech or misinformation.

  • Explainability: Incorporate models that offer transparent decision-making to ensure the NLU’s reasoning can be explained and corrected if necessary.

    11. Deployment and Continuous Maintenance

  • Integration: Seamlessly integrate the NLU into various applications (chatbots, content analysis tools, sentiment analysis engines).

  • Monitoring: Implement monitoring tools to measure the system's performance over time and in new linguistic environments.

  • Continuous Data Input: Set up feedback loops where the system can learn from interactions in the wild and improve its understanding through active learning.

This step-by-step process is an iterative, evolving approach that balances linguistic theory, computational power, and practical constraints. Building a system of this scale will require extensive collaboration across linguistics, machine learning, and computational infrastructure.

Creating a complete Natural Language Understanding (NLU) system that works in the way described would require thousands of lines of code and a complex architecture. However, I can give you a simplified framework for building a basic NLU system in Python that incorporates some of the key elements. For this, we’ll break it down into smaller components that could be expanded upon over time.

Here is a basic code structure using popular machine learning and NLP libraries such as transformers, spaCy, and nltk. This will provide a foundation for the larger system.

1. Installing Dependencies

First, you’ll need to install some dependencies:

pip install transformers torch spacy nltk
python -m spacy download en_core_web_sm

2. Basic Structure of NLU System

We'll start with:

  • Loading Pre-trained Models for language understanding (e.g., BERT).
  • Contextual Analysis using spaCy and nltk for parsing sentences.
  • Sentiment Analysis as an example task.
import torch
from transformers import BertTokenizer, BertForSequenceClassification
import spacy
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer

# Load pre-trained models
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

# Load spaCy for NLP
nlp = spacy.load('en_core_web_sm')

# NLTK for sentiment analysis
nltk.download('vader_lexicon')
sia = SentimentIntensityAnalyzer()

# Function to analyze text with BERT
def analyze_text_with_bert(text):
    inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    return predictions

# Function for syntactic analysis using spaCy
def syntactic_analysis(text):
    doc = nlp(text)
    for token in doc:
        print(f'{token.text}: {token.dep_} ({token.head.text})')

# Function for sentiment analysis using NLTK
def sentiment_analysis(text):
    sentiment_scores = sia.polarity_scores(text)
    print(f"Sentiment: {sentiment_scores}")

# Basic function to combine different analyses
def nlu_system(text):
    print(f"Analyzing: {text}\n")

    # Syntactic Analysis
    print("Syntactic Analysis (spaCy):")
    syntactic_analysis(text)

    # Sentiment Analysis
    print("\nSentiment Analysis (NLTK):")
    sentiment_analysis(text)

    # BERT Analysis (classification)
    print("\nBERT-based Text Analysis:")
    predictions = analyze_text_with_bert(text)
    print(f"Predictions: {predictions}")

# Example usage
if __name__ == "__main__":
    sample_text = "The movie was fantastic, but the ending was a bit disappointing."
    nlu_system(sample_text)

3. Explanation of the Code

Components:

  1. BERT-based Analysis:

    • The analyze_text_with_bert function uses a pre-trained BERT model for sequence classification (e.g., sentiment analysis, question answering, or general text classification).
    • It tokenizes the input text and uses a BERT model to analyze it, returning the output predictions.
  2. Syntactic Analysis with spaCy:

    • The syntactic_analysis function uses spaCy to parse the input text and provide a dependency tree, identifying syntactic relationships between words (subject, object, verb, etc.).
  3. Sentiment Analysis with NLTK:

    • The sentiment_analysis function uses NLTK’s VADER model for basic sentiment analysis (positive, negative, neutral).
  4. NLU System:

    • The nlu_system function combines these components and outputs the analysis for a given piece of text.

4. Scaling Up the System

To build the system as described in your earlier inquiry, you would need to:

  • Expand the BERT model to handle multi-task learning, such as Named Entity Recognition (NER), Question Answering, and Text Summarization.
  • Fine-tune models on specific datasets to handle domain-specific text and multi-lingual contexts.
  • Add Pragmatics: Implement specific logic for cultural nuances and idiomatic expressions. This may involve custom datasets or specific attention mechanisms in your transformer models.
  • Integrate Knowledge Graphs to provide real-world context to the NLU system. This could be done by adding knowledge retrieval functions from external sources like Wikidata or custom-built knowledge graphs.
  • Continuous Learning: Incorporate reinforcement learning techniques to allow the system to adapt to new text as it interacts with users.

This basic framework provides the backbone for larger, more complex NLU tasks, and you can grow it by implementing more specific models, handling additional languages, and introducing components like contextual memory or dialogue systems.

Advanced NLU at Advanced NLU Integration

版本声明 本文转载于:https://dev.to/kavya-sahai-god/how-to-create-a-human-level-natural-language-understanding-nlu-system-3gmp?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何为PostgreSQL中的每个唯一标识符有效地检索最后一行?
    如何为PostgreSQL中的每个唯一标识符有效地检索最后一行?
    postgresql:为每个唯一标识符在postgresql中提取最后一行,您可能需要遇到与数据集合中每个不同标识的信息相关的信息。考虑以下数据:[ 1 2014-02-01 kjkj 在数据集中的每个唯一ID中检索最后一行的信息,您可以在操作员上使用Postgres的有效效率: id dat...
    编程 发布于2025-07-10
  • 如何使用替换指令在GO MOD中解析模块路径差异?
    如何使用替换指令在GO MOD中解析模块路径差异?
    在使用GO MOD时,在GO MOD 中克服模块路径差异时,可能会遇到冲突,其中3个Party Package将另一个PAXPANCE带有导入式套件之间的另一个软件包,并在导入式套件之间导入另一个软件包。如回声消息所证明的那样: go.etcd.io/bbolt [&&&&&&&&&&&&&&&&...
    编程 发布于2025-07-10
  • 为什么在我的Linux服务器上安装Archive_Zip后,我找不到“ class \” class \'ziparchive \'错误?
    为什么在我的Linux服务器上安装Archive_Zip后,我找不到“ class \” class \'ziparchive \'错误?
    Class 'ZipArchive' Not Found Error While Installing Archive_Zip on Linux ServerSymptom:When attempting to run a script that utilizes the ZipAr...
    编程 发布于2025-07-10
  • CSS强类型语言解析
    CSS强类型语言解析
    您可以通过其强度或弱输入的方式对编程语言进行分类的方式之一。在这里,“键入”意味着是否在编译时已知变量。一个例子是一个场景,将整数(1)添加到包含整数(“ 1”)的字符串: result = 1 "1";包含整数的字符串可能是由带有许多运动部件的复杂逻辑套件无意间生成的。它也可以是故意从单个真理...
    编程 发布于2025-07-10
  • 解决Spring Security 4.1及以上版本CORS问题指南
    解决Spring Security 4.1及以上版本CORS问题指南
    弹簧安全性cors filter:故障排除常见问题 在将Spring Security集成到现有项目中时,您可能会遇到与CORS相关的错误,如果像“访问Control-allo-allow-Origin”之类的标头,则无法设置在响应中。为了解决此问题,您可以实现自定义过滤器,例如代码段中的MyFi...
    编程 发布于2025-07-10
  • 为什么PYTZ最初显示出意外的时区偏移?
    为什么PYTZ最初显示出意外的时区偏移?
    与pytz 最初从pytz获得特定的偏移。例如,亚洲/hong_kong最初显示一个七个小时37分钟的偏移: 差异源利用本地化将时区分配给日期,使用了适当的时区名称和偏移量。但是,直接使用DateTime构造器分配时区不允许进行正确的调整。 example pytz.timezone(...
    编程 发布于2025-07-10
  • 如何使用Depimal.parse()中的指数表示法中的数字?
    如何使用Depimal.parse()中的指数表示法中的数字?
    在尝试使用Decimal.parse(“ 1.2345e-02”中的指数符号表示法表示的字符串时,您可能会遇到错误。这是因为默认解析方法无法识别指数符号。 成功解析这样的字符串,您需要明确指定它代表浮点数。您可以使用numbersTyles.Float样式进行此操作,如下所示:[&& && && ...
    编程 发布于2025-07-10
  • 如何修复\“常规错误:2006 MySQL Server在插入数据时已经消失\”?
    如何修复\“常规错误:2006 MySQL Server在插入数据时已经消失\”?
    How to Resolve "General error: 2006 MySQL server has gone away" While Inserting RecordsIntroduction:Inserting data into a MySQL database can...
    编程 发布于2025-07-10
  • 如何简化PHP中的JSON解析以获取多维阵列?
    如何简化PHP中的JSON解析以获取多维阵列?
    php 试图在PHP中解析JSON数据的JSON可能具有挑战性,尤其是在处理多维数组时。要简化过程,建议将JSON作为数组而不是对象解析。执行此操作,将JSON_DECODE函数与第二个参数设置为true:[&&&&& && &&&&& json = JSON = JSON_DECODE($ j...
    编程 发布于2025-07-10
  • 左连接为何在右表WHERE子句过滤时像内连接?
    左连接为何在右表WHERE子句过滤时像内连接?
    左JOIN CONUNDRUM:WITCHING小时在数据库Wizard的领域中变成内在的加入很有趣,当将c.foobar条件放置在上面的Where子句中时,据说左联接似乎会转换为内部连接。仅当满足A.Foo和C.Foobar标准时,才会返回结果。为什么要变形?关键在于其中的子句。当左联接的右侧值...
    编程 发布于2025-07-10
  • Python高效去除文本中HTML标签方法
    Python高效去除文本中HTML标签方法
    在Python中剥离HTML标签,以获取原始的文本表示Achieving Text-Only Extraction with Python's MLStripperTo streamline the stripping process, the Python standard librar...
    编程 发布于2025-07-10
  • 如何从PHP中的Unicode字符串中有效地产生对URL友好的sl。
    如何从PHP中的Unicode字符串中有效地产生对URL友好的sl。
    为有效的slug生成首先,该函数用指定的分隔符替换所有非字母或数字字符。此步骤可确保slug遵守URL惯例。随后,它采用ICONV函数将文本简化为us-ascii兼容格式,从而允许更广泛的字符集合兼容性。接下来,该函数使用正则表达式删除了不需要的字符,例如特殊字符和空格。此步骤可确保slug仅包含...
    编程 发布于2025-07-10
  • 如何限制动态大小的父元素中元素的滚动范围?
    如何限制动态大小的父元素中元素的滚动范围?
    在交互式接口中实现垂直滚动元素的CSS高度限制问题:考虑一个布局,其中我们具有与用户垂直滚动一起移动的可滚动地图div,同时与固定的固定sidebar保持一致。但是,地图的滚动无限期扩展,超过了视口的高度,阻止用户访问页面页脚。$("#map").css({ marginT...
    编程 发布于2025-07-10
  • 在Java中使用for-to-loop和迭代器进行收集遍历之间是否存在性能差异?
    在Java中使用for-to-loop和迭代器进行收集遍历之间是否存在性能差异?
    For Each Loop vs. Iterator: Efficiency in Collection TraversalIntroductionWhen traversing a collection in Java, the choice arises between using a for-...
    编程 发布于2025-07-10
  • 版本5.6.5之前,使用current_timestamp与时间戳列的current_timestamp与时间戳列有什么限制?
    版本5.6.5之前,使用current_timestamp与时间戳列的current_timestamp与时间戳列有什么限制?
    在时间戳列上使用current_timestamp或MySQL版本中的current_timestamp或在5.6.5 此限制源于遗留实现的关注,这些限制需要对当前的_timestamp功能进行特定的实现。 创建表`foo`( `Productid` int(10)unsigned not n...
    编程 发布于2025-07-10

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3