”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 收集和处理 INMET-BDMEP 气候数据

收集和处理 INMET-BDMEP 气候数据

发布于2024-11-02
浏览:803

Os dados climáticos desempenham um papel crucial em diversos setores, auxiliando em estudos e previsões que impactam áreas como agricultura, planejamento urbano, e gestão de recursos naturais.

O Instituto Nacional de Meteorologia (INMET) oferece, mensalmente, o Banco de Dados Meteorológicos (BDMEP) em seu site. Este banco de dados contém uma série histórica de informações climáticas coletadas por centenas de estações de medição distribuídas por todo o Brasil. No BDMEP, você encontrará dados detalhados sobre pluviometria, temperatura, umidade do ar e velocidade do vento.

Com atualizações horárias, esses dados são bastante volumosos, proporcionando uma base rica para análises detalhadas e tomadas de decisão informadas.

Neste post vou mostrar como coletar e tratar os dados climáticos do INMET-BDMEP. Vamos coletar os arquivos de dados brutos disponíveis no site do INMET e depois vamos tratar esses dados para facilitar a análise.

1. Pacotes Python necessários

Para alcançar os objetivos mencionados será preciso ter instalado apenas três pacotes:

  • httpx para fazer as requisições HTTP
  • Pandas para a leitura e tratamento dos dados
  • tqdm para mostrar uma barra de progresso amigável no terminal enquanto o programa baixa ou lê os arquivos

Para instalar os pacotes necessários execute o seguinte comando no terminal:

pip install httpx pandas tqdm

Se estiver usando um ambiente virtual (venv) com poetry, por exemplo, use o seguinte comando:

poetry add httpx pandas tqdm

2. Coleta dos arquivos

2.1 Padrão da URL dos arquivos

O endereço dos arquivos de dados do BDMEP seguem um padrão bem simples. O padrão é o seguinte:

https://portal.inmet.gov.br/uploads/dadoshistoricos/{year}.zip

A única parte que muda é o nome do arquivo que é, simplesmente, o ano de referência dos dados. Mensalmente, o arquivo para o ano mais recente (corrente) é substituído com dados atualizados.

Assim fica fácil criar um código para coletar automaticamente os arquivos de dados de todos os anos disponíveis.

Aliás, a série histórica disponível começa no ano 2000.

2.2 Estratégia de coleta

Para a coleta dos arquivos de dados do INMET-BDMEP vamos usar a biblioteca httpx para fazer as requisições HTTP e a biblioteca tqdm para mostrar uma barra de progresso amigável no terminal.

Primeiro, vamos importar os pacotes necessários:

import datetime as dt
from pathlib import Path

import httpx
from tqdm import tqdm

Já identificamos o padrão da URL dos arquivos de dados do INMET-BDMEP. Agora vamos criar uma função que aceita um ano como argumento e devolve a URL do arquivo referente a esse ano.

def build_url(year):
    return f"https://portal.inmet.gov.br/uploads/dadoshistoricos/{year}.zip"

Para checar se o arquivo da URL foi atualizado podemos utilizar a informação presente no cabeçalho retornado por uma requisição HTTP. Em servidores bem configurados, podemos pedir apenas esse cabeçalho com o método HEAD. Nesse o servidor foi bem configurado e podemos usar desse método.

A resposta à requisição HEAD terá o seguinte formato:

Mon, 01 Sep 2024 00:01:00 GMT

Para parsear essa data/hora fiz a seguinte função em Python, que aceita uma string e devolve um objeto datetime:

def parse_last_modified(last_modified: str) -> dt.datetime:
    return dt.datetime.strptime(
        last_modified,
        "%a, %d %b %Y %H:%M:%S %Z"
    )

Assim, podemos usar a data/hora da última modificação para incluir no nome do arquivo que vamos baixar, usando interpolação de strings (f-strings):

def build_local_filename(year: int, last_modified: dt.datetime) -> str:
    return f"inmet-bdmep_{year}_{last_modified:%Y%m%d}.zip"

Dessa forma, é possível verificar facilmente se o arquivo com os dados mais recentes já existe no nosso sistema de arquivos local. Se o arquivo já existir, o programa pode ser encerrado; caso contrário, devemos prosseguir com a coleta do arquivo, fazendo a requisição ao servidor.

A função download_year abaixo faz o download do arquivo referente a um ano específico. Se o arquivo já existe no diretório de destino, a função simplesmente retorna sem fazer nada.

Note como usamos o tqdm para mostrar uma barra de progresso amigável no terminal enquanto o arquivo é baixado.

def download_year(
    year: int,
    destdirpath: Path,
    blocksize: int = 2048,
) -> None:

    if not destdirpath.exists():
        destdirpath.mkdir(parents=True)

    url = build_url(year)

    headers = httpx.head(url).headers
    last_modified = parse_last_modified(headers["Last-Modified"])
    file_size = int(headers.get("Content-Length", 0))

    destfilename = build_local_filename(year, last_modified)
    destfilepath = destdirpath / destfilename
    if destfilepath.exists():
        return

    with httpx.stream("GET", url) as r:
        pb = tqdm(
            desc=f"{year}",
            dynamic_ncols=True,
            leave=True,
            total=file_size,
            unit="iB",
            unit_scale=True,
        )
        with open(destfilepath, "wb") as f:
            for data in r.iter_bytes(blocksize):
                f.write(data)
                pb.update(len(data))
        pb.close()

2.3 Coleta dos arquivos

Agora que temos todas as funções necessárias, podemos fazer a coleta dos arquivos de dados do INMET-BDMEP.

Usando um loop for podemos baixar os arquivos de todos os anos disponíveis. O código a seguir faz exatamente isso. Começando do ano 2000 até o ano corrente.

destdirpath = Path("data")
for year in range(2000, dt.datetime.now().year   1):
    download_year(year, destdirpath)

3. Leitura e tratamento dos dados

Com os arquivos de dados brutos do INMET-BDMEP baixados, agora podemos fazer a leitura e o tratamento dos dados.

Vamos importar os pacotes necessários:

import csv
import datetime as dt
import io
import re
import zipfile
from pathlib import Path

import numpy as np
import pandas as pd
from tqdm import tqdm

3.1 Estrutura dos arquivos

Dentro do arquivo ZIP disponibilizado pelo INMET encontramos diversos arquivos CSV, um para cada estação meteorológica.

Porém, nas primeiras linhas desses arquivos CSV encontramos informações sobre a estação, como a região, a unidade federativa, o nome da estação, o código WMO, as coordenadas geográficas (latitude e longitude), a altitude e a data de fundação. Vamos extrair essas informações para usar como metadados.

3.2 Leitura dos dados com pandas

A leitura dos arquivos será feita em duas partes: primeiro, será feita a leitura dos metadados das estações meteorológicas; depois, será feita a leitura dos dados históricos propriamente ditos.

3.2.1 Metadados

Para extrair os metadados nas primeiras 8 linhas do arquivo CSV vamos usar o pacote embutido csv do Python.

Para entender a função a seguir é necessário ter um conhecimento um pouco mais avançado de como funciona handlers de arquivos (open), iteradores (next) e expressões regulares (re.match).

def read_metadata(filepath: Path | zipfile.ZipExtFile) -> dict[str, str]:
    if isinstance(filepath, zipfile.ZipExtFile):
        f = io.TextIOWrapper(filepath, encoding="latin-1")
    else:
        f = open(filepath, "r", encoding="latin-1")
    reader = csv.reader(f, delimiter=";")
    _, regiao = next(reader)
    _, uf = next(reader)
    _, estacao = next(reader)
    _, codigo_wmo = next(reader)
    _, latitude = next(reader)
    try:
        latitude = float(latitude.replace(",", "."))
    except:
        latitude = np.nan
    _, longitude = next(reader)
    try:
        longitude = float(longitude.replace(",", "."))
    except:
        longitude = np.nan
    _, altitude = next(reader)
    try:
        altitude = float(altitude.replace(",", "."))
    except:
        altitude = np.nan
    _, data_fundacao = next(reader)
    if re.match("[0-9]{4}-[0-9]{2}-[0-9]{2}", data_fundacao):
        data_fundacao = dt.datetime.strptime(
            data_fundacao,
            "%Y-%m-%d",
        )
    elif re.match("[0-9]{2}/[0-9]{2}/[0-9]{2}", data_fundacao):
        data_fundacao = dt.datetime.strptime(
            data_fundacao,
            "%d/%m/%y",
        )
    f.close()
    return {
        "regiao": regiao,
        "uf": uf,
        "estacao": estacao,
        "codigo_wmo": codigo_wmo,
        "latitude": latitude,
        "longitude": longitude,
        "altitude": altitude,
        "data_fundacao": data_fundacao,
    }

Em resumo, a função read_metadata definida acima lê as primeiras oito linhas do arquivo, processa os dados e retorna um dicionário com as informações extraídas.

3.2.2 Dados históricos

Aqui, finalmente, veremos como fazer a leitura do arquivo CSV. Na verdade é bastante simples. Basta usar a função read_csv do Pandas com os argumentos certos.

A seguir está exposto a chamada da função com os argumentos que eu determinei para a correta leitura do arquivo.

pd.read_csv(
    "arquivo.csv",
    sep=";",
    decimal=",",
    na_values="-9999",
    encoding="latin-1",
    skiprows=8,
    usecols=range(19),
)

Primeiro é preciso dizer que o caractere separador das colunas é o ponto-e-vírgula (;), o separador de número decimal é a vírgula (,) e o encoding é latin-1, muito comum no Brasil.

Também é preciso dizer para pular as 8 primeiras linhas do arquivo (skiprows=8), que contém os metadados da estação), e usar apenas as 19 primeiras colunas (usecols=range(19)).

Por fim, vamos considerar o valor -9999 como sendo nulo (na_values="-9999").

3.3 Tratamento dos dados

Os nomes das colunas dos arquivos CSV do INMET-BDMEP são bem descritivos, mas um pouco longos. E os nomes não são consistentes entre os arquivos e ao longo do tempo. Vamos renomear as colunas para padronizar os nomes e facilitar a manipulação dos dados.

A seguinte função será usada para renomear as colunas usando expressões regulares (RegEx):

def columns_renamer(name: str) -> str:
    name = name.lower()
    if re.match(r"data", name):
        return "data"
    if re.match(r"hora", name):
        return "hora"
    if re.match(r"precipita[çc][ãa]o", name):
        return "precipitacao"
    if re.match(r"press[ãa]o atmosf[ée]rica ao n[íi]vel", name):
        return "pressao_atmosferica"
    if re.match(r"press[ãa]o atmosf[ée]rica m[áa]x", name):
        return "pressao_atmosferica_maxima"
    if re.match(r"press[ãa]o atmosf[ée]rica m[íi]n", name):
        return "pressao_atmosferica_minima"
    if re.match(r"radia[çc][ãa]o", name):
        return "radiacao"
    if re.match(r"temperatura do ar", name):
        return "temperatura_ar"
    if re.match(r"temperatura do ponto de orvalho", name):
        return "temperatura_orvalho"
    if re.match(r"temperatura m[áa]x", name):
        return "temperatura_maxima"
    if re.match(r"temperatura m[íi]n", name):
        return "temperatura_minima"
    if re.match(r"temperatura orvalho m[áa]x", name):
        return "temperatura_orvalho_maxima"
    if re.match(r"temperatura orvalho m[íi]n", name):
        return "temperatura_orvalho_minima"
    if re.match(r"umidade rel\. m[áa]x", name):
        return "umidade_relativa_maxima"
    if re.match(r"umidade rel\. m[íi]n", name):
        return "umidade_relativa_minima"
    if re.match(r"umidade relativa do ar", name):
        return "umidade_relativa"
    if re.match(r"vento, dire[çc][ãa]o", name):
        return "vento_direcao"
    if re.match(r"vento, rajada", name):
        return "vento_rajada"
    if re.match(r"vento, velocidade", name):
        return "vento_velocidade"

Agora que temos os nomes das colunas padronizados, vamos tratar a data/hora. Os arquivos CSV do INMET-BDMEP têm duas colunas separadas para data e hora. Isso é inconveniente, pois é mais prático ter uma única coluna de data/hora. Além disso existem inconsistências nos horários, que às vezes têm minutos e às vezes não.

As três funções a seguir serão usadas para criar uma única coluna de data/hora:

def convert_dates(dates: pd.Series) -> pd.DataFrame:
    dates = dates.str.replace("/", "-")
    return dates


def convert_hours(hours: pd.Series) -> pd.DataFrame:

    def fix_hour_string(hour: str) -> str:
        if re.match(r"^\d{2}\:\d{2}$", hour):
            return hour
        else:
            return hour[:2]   ":00"

    hours = hours.apply(fix_hour_string)
    return hours


def fix_data_hora(d: pd.DataFrame) -> pd.DataFrame:
    d = d.assign(
        data_hora=pd.to_datetime(
            convert_dates(d["data"])   " "   convert_hours(d["hora"]),
            format="%Y-%m-%d %H:%M",
        ),
    )
    d = d.drop(columns=["data", "hora"])
    return d

Existe um problema com os dados do INMET-BDMEP que é a presença de linhas vazias. Vamos remover essas linhas vazias para evitar problemas futuros. O código a seguir faz isso:

# Remove empty rows
empty_columns = [
    "precipitacao",
    "pressao_atmosferica",
    "pressao_atmosferica_maxima",
    "pressao_atmosferica_minima",
    "radiacao",
    "temperatura_ar",
    "temperatura_orvalho",
    "temperatura_maxima",
    "temperatura_minima",
    "temperatura_orvalho_maxima",
    "temperatura_orvalho_minima",
    "umidade_relativa_maxima",
    "umidade_relativa_minima",
    "umidade_relativa",
    "vento_direcao",
    "vento_rajada",
    "vento_velocidade",
]
empty_rows = data[empty_columns].isnull().all(axis=1)
data = data.loc[~empty_rows]

Problema resolvido! (•̀ᴗ•́)و ̑̑

3.4 Encapsulando em funções

Para finalizar esta seção vamos encapsular o código de leitura e tratamento em funções.

Primeiro uma função para a leitura do arquivo CSV contino no arquivo comprimido.

def read_data(filepath: Path) -> pd.DataFrame:
    d = pd.read_csv(
        filepath,
        sep=";",
        decimal=",",
        na_values="-9999",
        encoding="latin-1",
        skiprows=8,
        usecols=range(19),
    )
    d = d.rename(columns=columns_renamer)

    # Remove empty rows
    empty_columns = [
        "precipitacao",
        "pressao_atmosferica",
        "pressao_atmosferica_maxima",
        "pressao_atmosferica_minima",
        "radiacao",
        "temperatura_ar",
        "temperatura_orvalho",
        "temperatura_maxima",
        "temperatura_minima",
        "temperatura_orvalho_maxima",
        "temperatura_orvalho_minima",
        "umidade_relativa_maxima",
        "umidade_relativa_minima",
        "umidade_relativa",
        "vento_direcao",
        "vento_rajada",
        "vento_velocidade",
    ]
    empty_rows = d[empty_columns].isnull().all(axis=1)
    d = d.loc[~empty_rows]

    d = fix_data_hora(d)

    return d

Tem um problema com a função acima. Ela não lida com arquivos ZIP.

Criamos, então, a função read_zipfile para a leitura de todos os arquivos contidos no arquivo ZIP. Essa função itera sobre todos os arquivos CSV no arquivo zipado, faz a leitura usando a função read_data e os metadados usando a função read_metadata, e depois junta os dados e os metadados em um único DataFrame.

def read_zipfile(filepath: Path) -> pd.DataFrame:
    data = pd.DataFrame()
    with zipfile.ZipFile(filepath) as z:
        files = [zf for zf in z.infolist() if not zf.is_dir()]
        for zf in tqdm(files):
            d = read_data(z.open(zf.filename))
            meta = read_metadata(z.open(zf.filename))
            d = d.assign(**meta)
            data = pd.concat((data, d), ignore_index=True)
    return data

No final, basta usar essa última função definida (read_zipfile) para fazer a leitura dos arquivos ZIP baixados do site do INMET. (. ❛ ᴗ ❛.)

df = reader.read_zipfile("inmet-bdmep_2023_20240102.zip")
# 100%|████████████████████████████████████████████████████████████████████████████████| 567/567 [01:46



4. Gráfico de exemplo

Para finalizar, nada mais satisfatório do que fazer gráficos com os dados que coletamos e tratamos. ヾ(≧▽≦*)o

Nessa parte uso o R com o pacote tidyverse para fazer um gráfico combinando a temperatura horária e a média diária em São Paulo.

library(tidyverse)

dados  filter(uf == "SP")


# Temperatura horária em São Paulo
dados_sp_h 
  group_by(data_hora) |>
  summarise(
    temperatura_ar = mean(temperatura_ar, na.rm = TRUE),
  )


# Temperatura média diária em São Paulo
dados_sp_d 
  group_by(data = floor_date(data_hora, "day")) |>
  summarise(
    temperatura_ar = mean(temperatura_ar, na.rm = TRUE),
  )


# Gráfico combinando temperatura horária e média diária em São Paulo
dados_sp_h |>
  ggplot(aes(x = data_hora, y = temperatura_ar))  
  geom_line(
    alpha = 0.5,
    aes(
      color = "Temperatura horária"
    )
  )  
  geom_line(
    data = dados_sp_d,
    aes(
      x = data,
      y = temperatura_ar,
      color = "Temperatura média diária"
    ),
    linewidth = 1
  )  
  labs(
    x = "Data",
    y = "Temperatura (°C)",
    title = "Temperatura horária e média diária em São Paulo",
    color = "Variável"
  )  
  theme_minimal()  
  theme(legend.position = "top")
ggsave("temperatura_sp.png", width = 16, height = 8, dpi = 300)


Coletando e Tratando os Dados Climáticos do INMET-BDMEP


Temperatura horária e média diária em São Paulo em 2023

5. Conclusão

Neste texto mostrei como coletar e tratar os dados climáticos do INMET-BDMEP. Os dados coletados são muito úteis para estudos e previsões nas mais variadas áreas. Com os dados tratados, é possível fazer análises e gráficos como o que mostrei no final.

Espero que tenha gostado do texto e que tenha sido útil para você.

Criei um pacote Python com as funções que mostrei neste texto. O pacote está disponível no meu repositório Git. Se quiser, pode baixar o pacote e usar as funções no seu próprio código.

Repositório Git: https://github.com/dankkom/inmet-bdmep-data

(~ ̄▽ ̄)~

版本声明 本文转载于:https://dev.to/dankkom/coletando-e-tratando-os-dados-climaticos-do-inmet-bdmep-1f8l?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 如何在Java字符串中有效替换多个子字符串?
    如何在Java字符串中有效替换多个子字符串?
    在java 中有效地替换多个substring,需要在需要替换一个字符串中的多个substring的情况下,很容易求助于重复应用字符串的刺激力量。 However, this can be inefficient for large strings or when working with nu...
    编程 发布于2025-04-07
  • 您如何在Laravel Blade模板中定义变量?
    您如何在Laravel Blade模板中定义变量?
    在Laravel Blade模板中使用Elegance 在blade模板中如何分配变量对于存储以后使用的数据至关重要。在使用“ {{}}”分配变量的同时,它可能并不总是最优雅的解决方案。幸运的是,Blade通过@php Directive提供了更优雅的方法: $ old_section =“...
    编程 发布于2025-04-07
  • 为什么Microsoft Visual C ++无法正确实现两台模板的实例?
    为什么Microsoft Visual C ++无法正确实现两台模板的实例?
    The Mystery of "Broken" Two-Phase Template Instantiation in Microsoft Visual C Problem Statement:Users commonly express concerns that Micro...
    编程 发布于2025-04-07
  • 如何使用组在MySQL中旋转数据?
    如何使用组在MySQL中旋转数据?
    在关系数据库中使用mySQL组使用mySQL组进行查询结果,在关系数据库中使用MySQL组,转移数据的数据是指重新排列的行和列的重排以增强数据可视化。在这里,我们面对一个共同的挑战:使用组的组将数据从基于行的基于列的转换为基于列。让我们考虑以下查询: select data d.data_ti...
    编程 发布于2025-04-07
  • 如何在php中使用卷发发送原始帖子请求?
    如何在php中使用卷发发送原始帖子请求?
    如何使用php 创建请求来发送原始帖子请求,开始使用curl_init()开始初始化curl session。然后,配置以下选项: curlopt_url:请求 [要发送的原始数据指定内容类型,为原始的帖子请求指定身体的内容类型很重要。在这种情况下,它是文本/平原。要执行此操作,请使用包含以下标头...
    编程 发布于2025-04-07
  • 如何同步迭代并从PHP中的两个等级阵列打印值?
    如何同步迭代并从PHP中的两个等级阵列打印值?
    同步的迭代和打印值来自相同大小的两个数组使用两个数组相等大小的selectbox时,一个包含country代码的数组,另一个包含乡村代码,另一个包含其相应名称的数组,可能会因不当提供了exply for for for the uncore for the forsion for for ytry...
    编程 发布于2025-04-07
  • 为什么尽管有效代码,为什么在PHP中捕获输入?
    为什么尽管有效代码,为什么在PHP中捕获输入?
    在php ;?>" method="post">The intention is to capture the input from the text box and display it when the submit button is clicked.但是,输出...
    编程 发布于2025-04-07
  • 如何在无序集合中为元组实现通用哈希功能?
    如何在无序集合中为元组实现通用哈希功能?
    在未订购的集合中的元素要纠正此问题,一种方法是手动为特定元组类型定义哈希函数,例如: template template template 。 struct std :: hash { size_t operator()(std :: tuple const&tuple)const {...
    编程 发布于2025-04-07
  • 为什么在我的Linux服务器上安装Archive_Zip后,我找不到“ class \” class \'ziparchive \'错误?
    为什么在我的Linux服务器上安装Archive_Zip后,我找不到“ class \” class \'ziparchive \'错误?
    class'ziparchive'在Linux Server上安装Archive_zip时找不到错误 commant in lin ins in cland ins in lin.11 on a lin.1 in a lin.11错误:致命错误:在... cass中找不到类z...
    编程 发布于2025-04-07
  • 如何限制动态大小的父元素中元素的滚动范围?
    如何限制动态大小的父元素中元素的滚动范围?
    在交互式接口中实现垂直滚动元素的CSS高度限制问题: 考虑一个布局,其中我们具有可滚动的映射div,该图像div与用户的垂直滚动一起移动,同时维持固定的固定sidebar。但是,地图的滚动无限期扩展,超过了视口的高度,阻止用户访问页面页脚。 映射{} 因此。我们不使用jQuery的“ .aim...
    编程 发布于2025-04-07
  • 如何在Java中执行命令提示命令,包括目录更改,包括目录更改?
    如何在Java中执行命令提示命令,包括目录更改,包括目录更改?
    在java 通过Java通过Java运行命令命令可能很具有挑战性。尽管您可能会找到打开命令提示符的代码段,但他们通常缺乏更改目录并执行其他命令的能力。 solution:使用Java使用Java,使用processBuilder。这种方法允许您:启动一个过程,然后将其标准错误重定向到其标准输出。...
    编程 发布于2025-04-07
  • 如何使用“ JSON”软件包解析JSON阵列?
    如何使用“ JSON”软件包解析JSON阵列?
    parsing JSON与JSON软件包 QUALDALS:考虑以下go代码:字符串 } func main(){ datajson:=`[“ 1”,“ 2”,“ 3”]`` arr:= jsontype {} 摘要:= = json.unmarshal([] byte(...
    编程 发布于2025-04-07
  • 为什么我的CSS背景图像出现?
    为什么我的CSS背景图像出现?
    故障排除:CSS背景图像未出现 ,您的背景图像尽管遵循教程说明,但您的背景图像仍未加载。图像和样式表位于相同的目录中,但背景仍然是空白的白色帆布。而不是不弃用的,您已经使用了CSS样式: bockent {背景:封闭图像文件名:背景图:url(nickcage.jpg); 如果您的html,css...
    编程 发布于2025-04-07
  • 哪种在JavaScript中声明多个变量的方法更可维护?
    哪种在JavaScript中声明多个变量的方法更可维护?
    在JavaScript中声明多个变量:探索两个方法在JavaScript中,开发人员经常遇到需要声明多个变量的需要。对此的两种常见方法是:在单独的行上声明每个变量: 当涉及性能时,这两种方法本质上都是等效的。但是,可维护性可能会有所不同。 第一个方法被认为更易于维护。每个声明都是其自己的语句,使其...
    编程 发布于2025-04-07

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3