”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > Go 中的断路器:阻止级联故障

Go 中的断路器:阻止级联故障

发布于2024-08-06
浏览:459

Circuit Breakers in Go: Stop Cascading Failures

Circuit Breakers

A circuit breaker detects failures and encapsulate the logic of handling those failures in a way that prevents the failure from constantly recurring. For example, they’re useful when dealing with network calls to external services, databases, or really, any part of your system that might fail temporarily. By using a circuit breaker, you can prevent cascading failures, manage temporary errors, and maintain a stable and responsive system amidst a system breakdown.

Cascading Failures

Cascading failures occur when a failure in one part of the system triggers failures in other parts, leading to widespread disruption. An example is when a microservice in a distributed system becomes unresponsive, causing dependent services to timeout and eventually fail. Depending on the scale of the application, the impact of these failures can be catastrophic which is going to degrade performance and probably even impact user experience.

Circuit Breaker Patterns

A circuit breaker itself is a technique/pattern and there are three different states it operates which we will talk about:

  1. Closed State: In a closed state, the circuit breaker allows all requests to pass through to the target service normally as they would. If the requests are successful, the circuit remains closed. However, if a certain threshold of failures is reached, the circuit transitions to the open state. Think of it like a fully operational service where users can log in and access data without issues. Everything is running smoothly.

Circuit Breakers in Go: Stop Cascading Failures

2. Open State : In an open state, the circuit breaker immediately fails all incoming requests without attempting to contact the target service. The state is entered to prevent further overload of the failing service and give it time to recover. After a predefined timeout, the circuit breaker moves to the half-open state. A relatable example is this; Imagine an online store experiences a sudden issue where every purchase attempt fails. To avoid overwhelming the system, the store temporarily stops accepting any new purchase requests.

Circuit Breakers in Go: Stop Cascading Failures

3. Half-Open State : In the half-open state, the circuit breaker allows a (configurable) limited number of test requests to pass through to the target service. And if these requests are successful, the circuit transitions back to the closed state. If they fail, the circuit returns to the open state. In the example of the online store i gave in the open state above, this is where the online store starts to allow a few purchase attempts to see if the issue has been fixed. If these few attempts succeed, the store will fully reopen its service to accept new purchase requests.

This diagram shows when the circuit breaker tries to see if requests to Service B are successful and then it fails/breaks:

Circuit Breakers in Go: Stop Cascading Failures

The follow up diagram then shows when the test requests to Service B succeeds, the circuit is closed, and all further calls are routed to Service B again:

Circuit Breakers in Go: Stop Cascading Failures

Note : Key configurations for a circuit breaker include the failure threshold (number of failures needed to open the circuit), the timeout for the open state, and the number of test requests in the half-open state.

Implementing Circuit Breakers in Go

It’s important to mention that prior knowledge of Go is required to follow along in this article.

As with any software engineering pattern, circuit breakers can be implemented in various languages. However, this article will focus on implementation in Golang. While there are several libraries available for this purpose, such as goresilience, go-resiliency, and gobreaker, we will specifically concentrate on using the gobreaker library.

Pro Tip : You can see the internal implementation of the gobreaker package, check here.

Let’s consider a simple Golang application where a circuit breaker is implemented to handle calls to an external API. This basic example demonstrates how to wrap an external API call with the circuit breaker technique:

Let’s touch on a few important things:

  1. gobreaker.NewCircuitBreaker function initializes the circuit breaker with our custom settings
  2. cb.Execute method wraps the HTTP request, automatically managing the circuit state.
  3. MaximumRequests is the maximum number of requests allowed to pass through when the state is half-open
  4. Interval is the cyclic period of the closed state for the circuit breaker to clear the internal counts
  5. Timeout is the duration before transitioning from open to half-open state.
  6. ReadyToTrip is called with a copy of counts whenever a request fails in the closed state. If ReadyToTrip returns true, the circuit breaker will be placed into the open state. In our case here, it returns true if requests have failed more then three consecutive times.
  7. OnStateChange is called whenever the state of the circuit breaker changes. You would usually want to collect the metrics of the state change here and report to any metrics collector of your choice.

Let’s write some unit tests to verify our circuit breaker implementation. I will only be explaining the most critical unit tests to understand. You can check here for the full code.

  1. We will write a test that simulates consecutive failed requests and checks if the circuit breaker trips to the open state. Essentially, after 3 failures, when the forth failure occurs, we expect the circuit breaker to trip (open) since our condition says counts.ConsecutiveFailures > 3 . Here's what the test looks like:
 t.Run("FailedRequests", func(t *testing.T) {
         // Override callExternalAPI to simulate failure
         callExternalAPI = func() (int, error) {
             return 0, errors.New("simulated failure")
         }

         for i := 0; i 



  1. We will test the open > half - open > closed states. But we will first simulate an open circuit and call a timeout. After a timeout, we need to make at least one success request for the circuit to transition to half-open. After the half-open state, we need to make another success request for the circuit to be fully closed again. If for any reason, there’s no record of a success request in the case, it will go back to being open. Here’s how the test looks like:
 //Simulates the circuit breaker being open, 
 //wait for the defined timeout, 
 //then check if it closes again after a successful request.
     t.Run("RetryAfterTimeout", func(t *testing.T) {
         // Simulate circuit breaker opening
         callExternalAPI = func() (int, error) {
             return 0, errors.New("simulated failure")
         }

         for i := 0; i 



  1. Let’s test the ReadyToTrip condition which triggers after 2 consecutive failure requests. We'll have a variable that tracks for consecutive failures. The ReadyToTrip callback is updated to check if the circuit breaker trips after 2 failures ( counts.ConsecutiveFailures > 2). We will write a test that simulates failures and verifies the count and that the circuit breaker transitions to the open state after the specified number of failures.
 t.Run("ReadyToTrip", func(t *testing.T) {
         failures := 0
         settings.ReadyToTrip = func(counts gobreaker.Counts) bool {
             failures = int(counts.ConsecutiveFailures)
             return counts.ConsecutiveFailures > 2 // Trip after 2 failures
         }

         cb = gobreaker.NewCircuitBreaker(settings)

         // Simulate failures
         callExternalAPI = func() (int, error) {
             return 0, errors.New("simulated failure")
         }
         for i := 0; i 



Advanced Strategies

We can take it a step further by adding an exponential backoff strategy to our circuit breaker implementation. We will this article keep it simple and concise by demonstrating an example of the exponential backoff strategy. However, there are other advanced strategies for circuit breakers worth mentioning, such as load shedding, bulkheading, fallback mechanisms, context and cancellation. These strategies basically enhance the robustness and functionality of circuit breakers. Here’s an example of using the exponential backoff strategy:

Exponential Backoff

Circuit breaker with exponential backoff

Let’s make a couple of things clear:

Custom Backoff Function: The exponentialBackoff function implements an exponential backoff strategy with a jitter. It basically calculates the backoff time based on the number of attempts, ensuring that the delay increases exponentially with each retry attempt.

Handling Retries: As you can see in the /api handler, the logic now includes a loop that attempts to call the external API up to a specified number of attempts ( attempts := 5). After each failed attempt, we wait for a duration determined by the exponentialBackoff function before retrying.

Circuit Breaker Execution: The circuit breaker is used within the loop. If the external API call succeeds ( err == nil), the loop breaks, and the successful result is returned. If all attempts fail, an HTTP 503 (Service Unavailable) error is returned.

Integrating custom backoff strategy in a circuit breaker implementation indeed aims to handle transient errors more gracefully. The increasing delays between retries help reduce the load on failing services, allowing them time to recover. As evident in our code above, our exponentialBackoff function was introduced to add delays between retries when calling an external API.

Additionally, we can integrate metrics and logging to monitor circuit breaker state changes using tools like Prometheus for real-time monitoring and alerting. Here’s a simple example:

Implementing a circuit breaker pattern with advanced strategies in go

As you’ll see, we have now done the following:

  1. In L16–21, we define a prometheus counter vector to keep track of the number of requests and their state (success, failure, circuit breaker state changes).
  2. In L25–26, the metrics defined are registered with Prometheus in the init function.

Pro Tip : The init function in Go is used to initialize the state of a package before the main function or any other code in the package is executed. In this case, the init function registers the requestCount metric with Prometheus. And this essentially ensures that Prometheus is aware of this metric and can start collect data as soon as the application starts running.

  1. We create the circuit breaker with custom settings, including the ReadyToTrip function that increases the failure counter and determines when to trip the circuit.

  2. OnStateChange to log state changes and increment the corresponding prometheus metric

  3. We expose the Prometheus metrics at /metrics endpoint

Wrapping Up

To wrap up this article, i hope you saw how circuit breakers play a huge role in building resilient and reliable systems. By proactively preventing cascading failures, they fortify the reliability of microservices and distributed systems, ensuring a seamless user experience even in the face of adversity.

Keep in mind, any system designed for scalability must incorporate strategies to gracefully handle failures and swiftly recover —  Oluwafemi , 2024

Originally published at https://oluwafemiakinde.dev on June 7, 2024.

版本声明 本文转载于:https://dev.to/oluwafemiakind1/circuit-breakers-in-go-stop-cascading-failures-3p1l?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 左连接为何在右表WHERE子句过滤时像内连接?
    左连接为何在右表WHERE子句过滤时像内连接?
    左JOIN CONUNDRUM:WITCHING小时在数据库Wizard的领域中变成内在的加入很有趣,当将c.foobar条件放置在上面的Where子句中时,据说左联接似乎会转换为内部连接。仅当满足A.Foo和C.Foobar标准时,才会返回结果。为什么要变形?关键在于其中的子句。当左联接的右侧值...
    编程 发布于2025-07-02
  • Go语言垃圾回收如何处理切片内存?
    Go语言垃圾回收如何处理切片内存?
    Garbage Collection in Go Slices: A Detailed AnalysisIn Go, a slice is a dynamic array that references an underlying array.使用切片时,了解垃圾收集行为至关重要,以避免潜在的内存泄...
    编程 发布于2025-07-02
  • 如何有效地选择熊猫数据框中的列?
    如何有效地选择熊猫数据框中的列?
    在处理数据操作任务时,在Pandas DataFrames 中选择列时,选择特定列的必要条件是必要的。在Pandas中,选择列的各种选项。选项1:使用列名 如果已知列索引,请使用ILOC函数选择它们。请注意,python索引基于零。 df1 = df.iloc [:,0:2]#使用索引0和1 c...
    编程 发布于2025-07-02
  • Python中何时用"try"而非"if"检测变量值?
    Python中何时用"try"而非"if"检测变量值?
    使用“ try“ vs.” if”来测试python 在python中的变量值,在某些情况下,您可能需要在处理之前检查变量是否具有值。在使用“如果”或“ try”构建体之间决定。“ if” constructs result = function() 如果结果: 对于结果: ...
    编程 发布于2025-07-02
  • 反射动态实现Go接口用于RPC方法探索
    反射动态实现Go接口用于RPC方法探索
    在GO 使用反射来实现定义RPC式方法的界面。例如,考虑一个接口,例如:键入myService接口{ 登录(用户名,密码字符串)(sessionId int,错误错误) helloworld(sessionid int)(hi String,错误错误) } 替代方案而不是依靠反射...
    编程 发布于2025-07-02
  • 如何使用FormData()处理多个文件上传?
    如何使用FormData()处理多个文件上传?
    )处理多个文件输入时,通常需要处理多个文件上传时,通常是必要的。 The fd.append("fileToUpload[]", files[x]); method can be used for this purpose, allowing you to send multi...
    编程 发布于2025-07-02
  • 将图片浮动到底部右侧并环绕文字的技巧
    将图片浮动到底部右侧并环绕文字的技巧
    在Web设计中围绕在Web设计中,有时可以将图像浮动到页面右下角,从而使文本围绕它缠绕。这可以在有效地展示图像的同时创建一个吸引人的视觉效果。 css位置在右下角,使用css float and clear properties: img { 浮点:对; ...
    编程 发布于2025-07-02
  • 如何为PostgreSQL中的每个唯一标识符有效地检索最后一行?
    如何为PostgreSQL中的每个唯一标识符有效地检索最后一行?
    postgresql:为每个唯一标识符提取最后一行,在Postgresql中,您可能需要遇到与在数据库中的每个不同标识相关的信息中提取信息的情况。考虑以下数据:[ 1 2014-02-01 kjkj 在数据集中的每个唯一ID中检索最后一行的信息,您可以在操作员上使用Postgres的有效效率: ...
    编程 发布于2025-07-02
  • 为什么我在Silverlight Linq查询中获得“无法找到查询模式的实现”错误?
    为什么我在Silverlight Linq查询中获得“无法找到查询模式的实现”错误?
    查询模式实现缺失:解决“无法找到”错误在银光应用程序中,尝试使用LINQ建立错误的数据库连接的尝试,无法找到以查询模式的实现。”当省略LINQ名称空间或查询类型缺少IEnumerable 实现时,通常会发生此错误。 解决问题来验证该类型的质量是至关重要的。在此特定实例中,tblpersoon可能需...
    编程 发布于2025-07-02
  • 在Ubuntu/linux上安装mysql-python时,如何修复\“ mysql_config \”错误?
    在Ubuntu/linux上安装mysql-python时,如何修复\“ mysql_config \”错误?
    mysql-python安装错误:“ mysql_config找不到”“ 由于缺少MySQL开发库而出现此错误。解决此问题,建议在Ubuntu上使用该分发的存储库。使用以下命令安装Python-MysqldB: sudo apt-get安装python-mysqldb sudo pip in...
    编程 发布于2025-07-02
  • PHP未来:适应与创新
    PHP未来:适应与创新
    PHP的未来将通过适应新技术趋势和引入创新特性来实现:1)适应云计算、容器化和微服务架构,支持Docker和Kubernetes;2)引入JIT编译器和枚举类型,提升性能和数据处理效率;3)持续优化性能和推广最佳实践。 引言在编程世界中,PHP一直是网页开发的中流砥柱。作为一个从1994年就开始发展...
    编程 发布于2025-07-02
  • Java中如何使用观察者模式实现自定义事件?
    Java中如何使用观察者模式实现自定义事件?
    在Java 中创建自定义事件的自定义事件在许多编程场景中都是无关紧要的,使组件能够基于特定的触发器相互通信。本文旨在解决以下内容:问题语句我们如何在Java中实现自定义事件以促进基于特定事件的对象之间的交互,定义了管理订阅者的类界面。以下代码片段演示了如何使用观察者模式创建自定义事件: args)...
    编程 发布于2025-07-02
  • 如何使用不同数量列的联合数据库表?
    如何使用不同数量列的联合数据库表?
    合并列数不同的表 当尝试合并列数不同的数据库表时,可能会遇到挑战。一种直接的方法是在列数较少的表中,为缺失的列追加空值。 例如,考虑两个表,表 A 和表 B,其中表 A 的列数多于表 B。为了合并这些表,同时处理表 B 中缺失的列,请按照以下步骤操作: 确定表 B 中缺失的列,并将它们添加到表的末...
    编程 发布于2025-07-02
  • 如何使用Java.net.urlConnection和Multipart/form-data编码使用其他参数上传文件?
    如何使用Java.net.urlConnection和Multipart/form-data编码使用其他参数上传文件?
    使用http request 上传文件上传到http server,同时也提交其他参数,java.net.net.urlconnection and Multipart/form-data Encoding是普遍的。 Here's a breakdown of the process:Mu...
    编程 发布于2025-07-02
  • 用户本地时间格式及时区偏移显示指南
    用户本地时间格式及时区偏移显示指南
    在用户的语言环境格式中显示日期/时间,并使用时间偏移在向最终用户展示日期和时间时,以其localzone and格式显示它们至关重要。这确保了不同地理位置的清晰度和无缝用户体验。以下是使用JavaScript实现此目的的方法。方法:推荐方法是处理客户端的Javascript中的日期/时间格式化和时...
    编程 发布于2025-07-02

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3