」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 使用 JavaScript 釋放大型語言模型的力量:實際應用程式

使用 JavaScript 釋放大型語言模型的力量:實際應用程式

發佈於2024-09-29
瀏覽:255

Unlocking the Power of Large Language Models with JavaScript: Real-World Applications

In recent years, Large Language Models (LLMs) have revolutionized how we interact with technology, enabling machines to understand and generate human-like text. With JavaScript being a versatile language for web development, integrating LLMs into your applications can open up a world of possibilities. In this blog, we'll explore some exciting practical use cases for LLMs using JavaScript, complete with examples to get you started.

1. Enhancing Customer Support with Intelligent Chatbots

Imagine having a virtual assistant that can handle customer queries 24/7, providing instant and accurate responses. LLMs can be used to build chatbots that understand and respond to customer questions effectively.

Example: Customer Support Chatbot

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function getSupportResponse(query) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Customer query: "${query}". How should I respond?`,
      max_tokens: 100,
      temperature: 0.5
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error generating response:', error);
    return 'Sorry, I am unable to help with that request.';
  }
}

// Example usage
const customerQuery = 'How do I reset my password?';
getSupportResponse(customerQuery).then(response => {
  console.log('Support Response:', response);
});

With this example, you can build a chatbot that provides helpful responses to common customer queries, improving user experience and reducing the workload on human support agents.

2. Boosting Content Creation with Automated Blog Outlines

Creating engaging content can be a time-consuming process. LLMs can assist in generating blog post outlines, making content creation more efficient.

Example: Blog Post Outline Generator

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function generateBlogOutline(topic) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Create a detailed blog post outline for the topic: "${topic}".`,
      max_tokens: 150,
      temperature: 0.7
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error generating outline:', error);
    return 'Unable to generate the blog outline.';
  }
}

// Example usage
const topic = 'The Future of Artificial Intelligence';
generateBlogOutline(topic).then(response => {
  console.log('Blog Outline:', response);
});

This script helps you quickly generate a structured outline for your next blog post, giving you a solid starting point and saving time in the content creation process.

3. Breaking Language Barriers with Real-Time Translation

Language translation is another area where LLMs excel. You can leverage LLMs to provide instant translations for users who speak different languages.

Example: Text Translation

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function translateText(text, targetLanguage) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Translate the following English text to ${targetLanguage}: "${text}"`,
      max_tokens: 60,
      temperature: 0.3
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error translating text:', error);
    return 'Translation error.';
  }
}

// Example usage
const text = 'Hello, how are you?';
translateText(text, 'French').then(response => {
  console.log('Translated Text:', response);
});

With this example, you can integrate translation features into your app, making it accessible to a global audience.

4. Summarizing Complex Texts for Easy Consumption

Reading and understanding lengthy articles can be challenging. LLMs can help summarize these texts, making them easier to digest.

Example: Text Summarization

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function summarizeText(text) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Summarize the following text: "${text}"`,
      max_tokens: 100,
      temperature: 0.5
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error summarizing text:', error);
    return 'Unable to summarize the text.';
  }
}

// Example usage
const article = 'The quick brown fox jumps over the lazy dog. This sentence contains every letter of the English alphabet at least once.';
summarizeText(article).then(response => {
  console.log('Summary:', response);
});

This code snippet helps you create summaries of long articles or documents, which can be useful for content curation and information dissemination.

5. Assisting Developers with Code Generation

Developers can use LLMs to generate code snippets, providing assistance with coding tasks and reducing the time spent on writing boilerplate code.

Example: Code Generation

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function generateCodeSnippet(description) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Write a JavaScript function that ${description}.`,
      max_tokens: 100,
      temperature: 0.5
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error generating code:', error);
    return 'Unable to generate the code.';
  }
}

// Example usage
const description = 'calculates the factorial of a number';
generateCodeSnippet(description).then(response => {
  console.log('Generated Code:', response);
});

With this example, you can generate code snippets based on descriptions, making development tasks more efficient.

6. Providing Personalized Recommendations

LLMs can help provide personalized recommendations based on user interests, enhancing user experience in various applications.

Example: Book Recommendation

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function recommendBook(interest) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Recommend a book for someone interested in ${interest}.`,
      max_tokens: 60,
      temperature: 0.5
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error recommending book:', error);
    return 'Unable to recommend a book.';
  }
}

// Example usage
const interest = 'science fiction';
recommendBook(interest).then(response => {
  console.log('Book Recommendation:', response);
});

This script provides personalized book recommendations based on user interests, which can be useful for creating tailored content suggestions.

7. Supporting Education with Concept Explanations

LLMs can assist in education by providing detailed explanations of complex concepts, making learning more accessible.

Example: Concept Explanation

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function explainConcept(concept) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Explain the concept of ${concept} in detail.`,
      max_tokens: 150,
      temperature: 0.5
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,


        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error explaining concept:', error);
    return 'Unable to explain the concept.';
  }
}

// Example usage
const concept = 'quantum computing';
explainConcept(concept).then(response => {
  console.log('Concept Explanation:', response);
});

This example helps generate detailed explanations of complex concepts, aiding in educational contexts.

8. Drafting Personalized Email Responses

Crafting personalized responses can be time-consuming. LLMs can help generate tailored email responses based on context and user input.

Example: Email Response Drafting

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function draftEmailResponse(emailContent) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Draft a response to the following email: "${emailContent}"`,
      max_tokens: 100,
      temperature: 0.5
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error drafting email response:', error);
    return 'Unable to draft the email response.';
  }
}

// Example usage
const emailContent = 'I am interested in your product and would like more information.';
draftEmailResponse(emailContent).then(response => {
  console.log('Drafted Email Response:', response);
});

This script automates the process of drafting email responses, saving time and ensuring consistent communication.

9. Summarizing Legal Documents

Legal documents can be dense and difficult to parse. LLMs can help summarize these documents, making them more accessible.

Example: Legal Document Summary

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function summarizeLegalDocument(document) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Summarize the following legal document: "${document}"`,
      max_tokens: 150,
      temperature: 0.5
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error summarizing document:', error);
    return 'Unable to summarize the document.';
  }
}

// Example usage
const document = 'This agreement governs the terms under which the parties agree to collaborate...';
summarizeLegalDocument(document).then(response => {
  console.log('Document Summary:', response);
});

This example demonstrates how to summarize complex legal documents, making them easier to understand.

10. Explaining Medical Conditions

Medical information can be complex and challenging to grasp. LLMs can provide clear and concise explanations of medical conditions.

Example: Medical Condition Explanation

const axios = require('axios');

// Replace with your OpenAI API key
const apiKey = 'YOUR_OPENAI_API_KEY';
const apiUrl = 'https://api.openai.com/v1/completions';

async function explainMedicalCondition(condition) {
  try {
    const response = await axios.post(apiUrl, {
      model: 'text-davinci-003',
      prompt: `Explain the medical condition ${condition} in simple terms.`,
      max_tokens: 100,
      temperature: 0.5
    }, {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });

    return response.data.choices[0].text.trim();
  } catch (error) {
    console.error('Error explaining condition:', error);
    return 'Unable to explain the condition.';
  }
}

// Example usage
const condition = 'Type 2 Diabetes';
explainMedicalCondition(condition).then(response => {
  console.log('Condition Explanation:', response);
});

This script provides a simplified explanation of medical conditions, aiding in patient education and understanding.


Incorporating LLMs into your JavaScript applications can significantly enhance functionality and user experience. Whether you're building chatbots, generating content, or assisting with education, LLMs offer powerful capabilities to streamline and improve various processes. By integrating these examples into your projects, you can leverage the power of AI to create more intelligent and responsive applications.

Feel free to adapt and expand upon these examples based on your specific needs and use cases. Happy coding!

版本聲明 本文轉載於:https://dev.to/koolkamalkishor/unlocking-the-power-of-large-language-models-with-javascript-real-world-applications-1gk?1如有侵犯,請聯絡study_golang@163 .com刪除
最新教學 更多>
  • Hacktoberfest 週線上拍賣系統
    Hacktoberfest 週線上拍賣系統
    概述 在 Hacktoberfest 的第三週,我決定為一個較小但有前途的專案做出貢獻:線上拍賣系統。儘管該專案仍處於早期階段,但它已經顯示出成長潛力,而且我看到了幫助改進其程式碼庫的機會。我的任務是透過減少冗餘程式碼和改進整體結構來重構項目,使其更具可維護性和可擴展性。 ...
    程式設計 發佈於2024-11-06
  • 如何使用“exception_ptr”在 C++ 執行緒之間傳播異常?
    如何使用“exception_ptr”在 C++ 執行緒之間傳播異常?
    在C 中的線程之間傳播異常當從主線程調用的函數生成多個線程時,就會出現在C 中的執行緒之間傳播異常的任務用於CPU 密集型工作的工作執行緒。挑戰在於處理工作執行緒上可能發生的異常並將其傳播回主執行緒以進行正確處理。 傳統方法一種常見方法是手動捕獲工作線程上的各種異常,記錄它們的詳細信息,然後在主線程...
    程式設計 發佈於2024-11-06
  • 如何使用 3D CSS 轉換來修復 Firefox 中的鋸齒狀邊緣?
    如何使用 3D CSS 轉換來修復 Firefox 中的鋸齒狀邊緣?
    使用3D CSS 變換時Firefox 中的鋸齒狀邊緣與Chrome 中使用CSS 變換時的鋸齒狀邊緣問題類似,Firefox 在3D 變換中也出現了這個問題。背面可見性作為 Chrome 中的潛在解決方案,在 Firefox 中被證明無效。 解決方案:要在Firefox 中緩解此問題,您可以實施以...
    程式設計 發佈於2024-11-06
  • 為什麼 PHP 的 mail() 函數會為電子郵件發送帶來挑戰?
    為什麼 PHP 的 mail() 函數會為電子郵件發送帶來挑戰?
    為什麼PHP 的mail() 函數達不到要求:限制和陷阱雖然PHP 提供了mail() 函數用於發送電子郵件,但它卻失敗了與專用庫或擴展相比較短。以下是與使用mail() 相關的缺點和限制的全面檢查:格式問題:mail() 可能會遇到以下問題:標題和內容格式,尤其是作業系統之間的換行差異。這些錯誤可...
    程式設計 發佈於2024-11-06
  • 使用 npyConverter 簡化 NumPy 檔案轉換
    使用 npyConverter 簡化 NumPy 檔案轉換
    如果您使用 NumPy 的 .npy 檔案並需要將其轉換為 .mat (MATLAB) 或 .csv 格式,npyConverter 就是適合您的工具!這個簡單的基於 GUI 的工具透過乾淨且用戶友好的介面提供 .npy 檔案的批量轉換。 主要特點 批次轉換:將目錄下所有.npy檔...
    程式設計 發佈於2024-11-06
  • 如何停用特定線路的 Eslint 規則?
    如何停用特定線路的 Eslint 規則?
    停用特定行的Eslint 規則在JSHint 中,可以使用語法停用特定行的linting 規則: /* jshint ignore:start */ $scope.someVar = ConstructorFunction(); /* jshint ignore:end */對於 eslint,有幾...
    程式設計 發佈於2024-11-06
  • 如何在沒有錯誤的情況下將清單插入 Pandas DataFrame 單元格?
    如何在沒有錯誤的情況下將清單插入 Pandas DataFrame 單元格?
    將清單插入Pandas 儲存格問題在Python 中,嘗試將清單插入Pandas DataFrame 的儲存格可能會導致錯誤或意圖想不到的結果。例如,當嘗試將清單插入DataFrame df 的儲存格1B 時:df = pd.DataFrame({'A': [12, 23], 'B': [np.na...
    程式設計 發佈於2024-11-06
  • Matplotlib 中的「plt.plot」、「ax.plot」和「figure.add_subplot」之間的主要差異是什麼?
    Matplotlib 中的「plt.plot」、「ax.plot」和「figure.add_subplot」之間的主要差異是什麼?
    Matplotlib 中繪圖、軸與圖形之間的差異Matplotlib 是一個用於建立視覺化的物件導向的 Python 函式庫。它使用三個主要物件:圖形、軸和繪圖。 圖形圖形表示將在其中顯示可視化的整個畫布或視窗。它定義畫布的整體大小和佈局,包括邊距、背景顏色和任何其他全域屬性。 軸軸表示圖中繪製資料...
    程式設計 發佈於2024-11-06
  • FireDucks:以零學習成本獲得超越 pandas 的效能!
    FireDucks:以零學習成本獲得超越 pandas 的效能!
    Pandas 是最受歡迎的庫之一,當我在尋找一種更簡單的方法來加速其性能時,我發現了 FireDucks 並對它產生了興趣! 與 pandas 的比較:為什麼選擇 FireDucks? Pandas 程式可能會遇到嚴重的效能問題,這取決於其編寫方式。然而,作為一名數據科學家,我想花...
    程式設計 發佈於2024-11-06
  • CSS 網格:嵌套網格佈局
    CSS 網格:嵌套網格佈局
    介紹 CSS Grid 是一種佈局系統,因其在創建多列佈局方面的靈活性和效率而迅速受到 Web 開發人員的歡迎。它最有用的功能之一是能夠建立嵌套網格佈局。嵌套網格可以在設計複雜網頁時提供更多控制和精確度。在本文中,我們將探討在 CSS Grid 中使用嵌套網格佈局的優點、缺點和主要...
    程式設計 發佈於2024-11-06
  • 適用於 Java 的 Jupyter 筆記本
    適用於 Java 的 Jupyter 筆記本
    Jupyter Notebook 的强大 Jupyter Notebooks 是一个出色的工具,最初是为了帮助数据科学家和工程师使用 python 编程语言简化数据处理工作而开发的。事实上,笔记本的交互性使其非常适合快速查看代码结果,而无需搭建开发环境、编译、打包等。此功能对于数据...
    程式設計 發佈於2024-11-06
  • 如何在 PyQt 中的主視窗和執行緒之間共享資料:直接引用與訊號和插槽?
    如何在 PyQt 中的主視窗和執行緒之間共享資料:直接引用與訊號和插槽?
    PyQt 中主視窗與執行緒之間共享資料多執行緒應用程式通常需要在主視窗執行緒與工作執行緒之間共用數據。為了確保線程安全和正確的通信,PyQt 提供了幾種實用的方法。 選項 1:直接引用主視窗在此方法中,對主視窗的引用視窗被傳遞給執行緒。然後執行緒可以直接存取主視窗中的數據,例如 spinbox 的值...
    程式設計 發佈於2024-11-06
  • 對於專業開發人員來說最有用的 VS Code 快捷方式?
    對於專業開發人員來說最有用的 VS Code 快捷方式?
    VS Code 中 20 個最有用的快捷鍵 一般導航 指令面板:存取 VS Code 中的所有可用指令。 Ctrl Shift P (Windows/Linux) 或 Cmd Shift P (macOS) 快速開啟:按名稱快速開啟檔案。 Ctrl P (Windows/Linux) 或 Cmd ...
    程式設計 發佈於2024-11-06
  • 何時使用“composer update”與“composer install”?
    何時使用“composer update”與“composer install”?
    探索composer update和composer install之間的區別Composer是一個流行的PHP依賴管理器,提供兩個關鍵命令:composer update和composer install。雖然它們具有管理依賴關係的共同目標,但它們具有不同的目的並以不同的方式運作。 Compose...
    程式設計 發佈於2024-11-06

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3