」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 了解 C 中的記憶體管理、指標和函數指針

了解 C 中的記憶體管理、指標和函數指針

發佈於2024-07-30
瀏覽:828

Understanding Memory Management, Pointers, and Function Pointers in C

In C programming, efficient memory management and the use of pointers are crucial for creating robust and high-performance applications. This guide provides a comprehensive overview of different types of memory, pointers, references, dynamic memory allocation, and function pointers, complete with examples to help you master these concepts. Whether you are new to C or looking to deepen your understanding, this guide covers essential topics to enhance your coding skills.

Different types of memory.

There is 5 different types of memory that you will encounter when programming in C.

1. Text segment

Your compiled code is stored here. The machine code instructions for your program. The text segment is read only so you cannot change any data but you can access it. Further down we’ll talk about function pointers. Those pointers point to a function in this segment.

2. Initialized Data Segment

Global and static variables are stored here, with specific values before the program runs and stay accessible throughout the program.

The difference between static and global variables is the scope, static variables is accessible in the function or block, it is defined but global variables can be accessed from anywhere in your program.

Normal variables are removed after a function is done executing while static variables remain.

3. Unitialized Data Segment (BSS)

Basically the same as initialized data segment but consists of variables without a specific value assigned to it. They have a value of 0 by default.

4. Heap

Here you have dynamic memory that you as a programmer can manage at run time. You can allocate memory and free memory with functions like malloc, calloc, realloc and free.

5. Stack

You are probably somewhat familiar with the stack. The stack memory manages function executions by storing local variables, arguments, and return values. The memory in the stack is removed after the function is done executing.

Data types and amount of storage.

In C you have different data types and the most common is int, float, double and char. I will not talk much about data types but the important thing is to know how many bytes a specific data type have in memory. Here is a list, keep it in mind.

Int: 4 bytes,
Float: 4 bytes,
Double: 8 bytes,
Char: 1 byte.

You can check the size of a data type with the sizeof() method.

Pointers and References.

When you assign a variable like;

int number = 5; 

The system will store the value of 5 in memory. But where in memory?

In memory there is actually addresses, and that’s how you can keep track of the values you have stored.

A reference is a variable’s address. Quite cool, right?

To access the reference of a variable use & followed by the variable name.

To print the reference to the console, we use the p format specifier.

int number = 5;

printf(“%d”, number);
// prints out 5 

printf(“%p”, &number);
// prints out the ref: 0x7ffd8379a74c

You probably get another address printed out.

Now to keep track of that reference use a pointer to store the reference.

Create a pointer variable by using *.

int number; 

int* pointer = &number;

printf(“%p”, pointer);
// 0x7ffd8379a74c

To get the value from a pointer you can use dereference. To derefernce a value you use * before the pointer. So * is used both to create a pointer and dereference it, but in different contexts.

int number = 5; // create variable.

int* pointer = &number //store the reference in the pointer

printf(“%p”, pointer); // print the reference
// 0x7ffd8379a74c

printf(“%d”, *pointer); // dereference the value. 
// 5

This is powerful because with pointers you can pass values by reference and not copy values. This is memory efficient and performant.

When you pass values to a function as arguments in a high level language you copy the values but in C you can send a reference and manipulate the value directly in memory.

#include 

void flipValues(int *a, int *b) { // receives two pointers of type int
  int temp = *a; // dereference pointer a and store it’s value in temp
  *a = *b; // dereference pointer b and store in pointer a
  *b = temp; // dereference b and change value to the value of temp
}

int main(void) {
  int a = 20;
  int b = 10;
  flipValues(&a, &b); // pass the references of a and b
  printf("a is now %d and b is %d", a, b);
  // a is now 10 and b is 20
  return 0;
}

A pointer can be declared as int* name; or int *name; both styles are correct and interchangeable.

Allocate and Deallocate dynamic memory.

When you declare a variable like int num = 5; inside a function including the main function, that variable is stored in the stack, and when the function is done executing the variable is removed.

But now we will allocate memory dynamically in the heap. Then we have full control over how much memory we need, and it will persist until we deallocate it.

Malloc and Calloc.

We can use the functions malloc or calloc to allocate memory.

Malloc takes one parameter representing the size of memory to allocate in bytes.

Calloc takes two parameters, the amount of items and how much memory in bytes each item occupies.

malloc(size)
calloc(amount, size)

calloc initializes all allocated memory to 0, while malloc leaves the memory uninitialized, making malloc slightly more efficient.

You can use sizeof to indicate how much memory you need. In the example we use malloc to allocate space for 4 integers.

int* data; 
data = malloc(sizeof(int) * 4);

Here is a visualization:

Pointer->[],[],[],[] [],[],[],[] [],[],[],[] [],[],[],[]

  1. Each bracket is a byte so here we see 16 bytes in memory.
  2. The malloc function allocates 4 x 4 bytes in memory, resulting in 16 bytes.
  3. int* data is a pointer of type int, so it points to the 4 first bytes in memory.

Therefore, pointer 1 moves the pointer one step to the right, referring to the next integer in memory, which is 4 bytes away.

int* data; 
  data = malloc(sizeof(int) * 4);

  *data = 10; // change first value to 10.
  *(data   1) = 20; // change second value to 20.
  *(data   2) = 30;
  *(data   3) = 40;

  for(int i = 0; i 



This is how an array work!

When you declare an array, the array name is a pointer to its first element.

int numbers[] = { 10, 20, 30, 40 };
  printf("%p\n", &numbers); 
  printf("%p", &numbers[0]);
  // 0x7ffe91c73c80
  // 0x7ffe91c73c80

As shown, the address of the array name is the same as the address of its first element.

Realloc

Sometimes you want to reallocate memory. A normal use case is when you need more memory then you initially allocated with malloc or calloc.

The realloc function takes 2 parameters. A pointer to where your data currently is located, and the size of memory you need.

int* pointer2 = realloc(*pointer1, size);

The realloc function will first check if the size of data can be stored at the current address and otherwise it will find another address to store it.

It’s unlikely but if there is not enough memory to reallocate the function will return null.

int *ptr1, *ptr2;

// Allocate memory
ptr1 = malloc(4);

// Attempt to resize the memory
ptr2 = realloc(ptr1, 8);

// Check whether realloc is able to resize the memory or not
if (ptr2 == NULL) {
  // If reallocation fails
  printf("Failed. Unable to resize memory");
} else {
  // If reallocation is sucessful
  printf("Success. 8 bytes reallocated at address %p \n", ptr2);
  ptr1 = ptr2;  // Update ptr1 to point to the newly allocated memory
}

Free memory

After you have allocated memory and don’t use it anymore. Deallocate it with the free() function with a pointer to the data to be freed.

After that, it is considered good practice to set the pointer to null so that the address is no longer referenced so that you don’t accidentally use that pointer again.

int *ptr;
ptr = malloc(sizeof(*ptr));

free(ptr);
ptr = NULL;

Remember that the same memory is used in your whole program and other programs running on the computer.

If you don’t free the memory it’s called data leak and you occupy memory for nothing. And if you accidentally change a pointer you have freed you can delete data from another part of your program or another program.

Create a Vector (dynamic array).

You can use your current knowledge to create a dynamic array.

As you may know, you can use structs to group data and are powerful to create data structures.

#include 
#include 

struct List {
  int *data; // Pointer to the list data
  int elements; // Number  of elements in the list 
  int capacity; // How much memmory the list can hold
};

void append(struct List *myList, int item);
void print(struct List *myList);
void free_list(struct List *myList);

int main() {
    struct List list;
    // initialize the list with no elements and capazity of 5 elements
    list.elements = 0;
    list.capacity = 5;
    list.data = malloc(list.capacity * sizeof(int));
    // Error handeling for allocation data
    if (list.data == NULL) {
    printf("Memory allocation failed");
    return 1; // Exit the program with an error code
    }
    // append 10 elements
    for(int i = 0; i elements == list->capacity) {
    list->capacity *= 2;
    list->data = realloc( list->data, list->capacity * sizeof(int) );
    }
    // Add the item to the end of the list
    list->data[list->elements] = item;
    list->elements  ;
}

void print(struct List *list) {
    for (int i = 0; i elements; i  ) {
    printf("%d ", list->data[i]);
    } 
}

void free_list(struct List *list) {
    free(list->data);
    list->data = NULL;
}

Static data

Global variables.

When declaring a variable above the main function they are stored in the data segment and are allocated in memory before the program starts and persists throughout the program and is accessible from all functions and blocks.

#include 
int globalVar = 10; // Stored in initilized data segment
int unitilizedGlobalVar; // Stored in uninitialized data segment

int main() {
    printf("global variable %d\n", globalVar);            printf("global uninitilized variable %d", unitilizedGlobalVar);
    // global variable 10
    // global uninitilized variable 0
    return 0;
}

Static variables

They work the same as global ones but are defined in a certain block but they are also allocated before the program starts and persist throughout the program. This is a good way of keeping the state of a variable. Use the keyword static when declaring the variable.

Here is a silly example where you have a function keeping the state of how many fruits you find in a garden using a static variable.

#include 

void countingFruits(int n) {
    // the variable is static and will remain through function calls and you can store the state of the variable
    static int totalFruits;
    totalFruits  = n;
    printf( "Total fruits: %d\n", totalFruits);
}

void pickingApples(int garden[], int size) {
    // search for apples
    int totalApples = 0;
    for(int i = 0; i 



Understanding Function Pointers in C.

Function pointers are a powerful feature in C that allow you to store the address of a function and call that function through the pointer. They are particularly useful for implementing callback functions and passing functions as arguments to other functions.

Function pointers reference functions in the text segment of memory. The text segment is where the compiled machine code of your program is stored.

Defining a Function Pointer

You define a function pointer by specifying the return type, followed by an asterisk * and the name of the pointer in parentheses, and finally the parameter types. This declaration specifies the signature of the function the pointer can point to.

int(*funcPointer)(int, int)

Using a Function Pointer

To use a function pointer, you assign it the address of a function with a matching signature and then call the function through the pointer.

You can call a function of the same signature from the function pointer

#include 

void greet() {
    printf("Hello!\n");
}

int main() {
    // Declare a function pointer and initialize it to point to the 'greet' function
    void (*funcPtr)();
    funcPtr = greet;

    // Call the function using the function pointer
    funcPtr();

    return 0;
}

Passing Function Pointers as Parameters

Function pointers can be passed as parameters to other functions, allowing for flexible and reusable code. This is commonly used for callbacks.

#include 

// Callback 1
void add(int a, int b) {
    int sum  = a   b;
    printf("%d   %d = %d\n", a, b, sum);
}

// Callback 2
void multiply(int a, int b) {
    int sum  = a * b;
    printf("%d x %d = %d\n", a, b, sum);
}

// Math function recieving a callback
void math(int a, int b, void (*callback)(int, int)) {
    // Call the callback function
    callback(a, b);
}

int main() {
    int a = 2;
    int b = 3;

    // Call math with add callback
    math(a, b, add);

    // Call math with multiply callback
    math(a, b, multiply);

    return 0;
}

Explanation of the Callback Example

Callback Functions: Define two functions, add and multiply, that will be used as callbacks. Each function takes two integers as parameters and prints the result of their respective operations.

Math Function: Define a function math that takes two integers and a function pointer (callback) as parameters. This function calls the callback function with the provided integers.

Main Function: In the main function, call math with different callback functions (add and multiply) to demonstrate how different operations can be performed using the same math function.

The output of the program is:

2   3 = 5
2 x 3 = 6

Thanks for reading and happy coding!

版本聲明 本文轉載於:https://dev.to/emanuelgustafzon/understanding-memory-management-pointers-and-function-pointers-in-c-8ld如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • 如何在 PHP 中組合兩個關聯數組,同時保留唯一 ID 並處理重複名稱?
    如何在 PHP 中組合兩個關聯數組,同時保留唯一 ID 並處理重複名稱?
    在 PHP 中組合關聯數組在 PHP 中,將兩個關聯數組組合成一個數組是常見任務。考慮以下請求:問題描述:提供的代碼定義了兩個關聯數組,$array1 和 $array2。目標是建立一個新陣列 $array3,它合併兩個陣列中的所有鍵值對。 此外,提供的陣列具有唯一的 ID,而名稱可能重疊。要求是建...
    程式設計 發佈於2024-12-19
  • 插入資料時如何修復「常規錯誤:2006 MySQL 伺服器已消失」?
    插入資料時如何修復「常規錯誤:2006 MySQL 伺服器已消失」?
    插入記錄時如何解決「一般錯誤:2006 MySQL 伺服器已消失」介紹:將資料插入MySQL 資料庫有時會導致錯誤「一般錯誤:2006 MySQL 伺服器已消失」。當與伺服器的連線遺失時會出現此錯誤,通常是由於 MySQL 配置中的兩個變數之一所致。 解決方案:解決此錯誤的關鍵是調整wait_tim...
    程式設計 發佈於2024-12-19
  • 大批
    大批
    方法是可以在物件上呼叫的 fns 數組是對象,因此它們在 JS 中也有方法。 slice(begin):將陣列的一部分提取到新數組中,而不改變原始數組。 let arr = ['a','b','c','d','e']; // Usecase: Extract till index ...
    程式設計 發佈於2024-12-19
  • 儘管程式碼有效,為什麼 POST 請求無法擷取 PHP 中的輸入?
    儘管程式碼有效,為什麼 POST 請求無法擷取 PHP 中的輸入?
    解決PHP 中的POST 請求故障在提供的程式碼片段:action=''而非:action="<?php echo $_SERVER['PHP_SELF'];?>";?>"檢查$_POST陣列:表單提交後使用 var_dump 檢查 $_POST 陣列的內容...
    程式設計 發佈於2024-12-19
  • 在 Go 中使用 WebSocket 進行即時通信
    在 Go 中使用 WebSocket 進行即時通信
    构建需要实时更新的应用程序(例如聊天应用程序、实时通知或协作工具)需要一种比传统 HTTP 更快、更具交互性的通信方法。这就是 WebSockets 发挥作用的地方!今天,我们将探讨如何在 Go 中使用 WebSocket,以便您可以向应用程序添加实时功能。 在这篇文章中,我们将介绍: WebSoc...
    程式設計 發佈於2024-12-19
  • Bootstrap 4 Beta 中的列偏移發生了什麼事?
    Bootstrap 4 Beta 中的列偏移發生了什麼事?
    Bootstrap 4 Beta:列偏移的刪除和恢復Bootstrap 4 在其Beta 1 版本中引入了重大更改柱子偏移了。然而,隨著 Beta 2 的後續發布,這些變化已經逆轉。 從 offset-md-* 到 ml-auto在 Bootstrap 4 Beta 1 中, offset-md-*...
    程式設計 發佈於2024-12-19
  • 為什麼我的 Spring Boot 應用程式不自動建立資料庫架構?
    為什麼我的 Spring Boot 應用程式不自動建立資料庫架構?
    在 Spring Boot 中自動建立資料庫架構啟動 Spring Boot 應用程式時,可能會遇到自動建立資料庫架構的問題。以下故障排除步驟旨在解決此問題:1.實體類別包:確保實體類別位於使用@EnableAutoConfiguration註解的類別的同一個套件或子包中。否則,Spring 將不會...
    程式設計 發佈於2024-12-18
  • CSS3 轉場是否提供事件來偵測起點和終點?
    CSS3 轉場是否提供事件來偵測起點和終點?
    了解 CSS3 過渡事件CSS3 過渡允許在 Web 元素上實現流暢的動畫和視覺效果。為了增強使用者體驗並使操作與這些轉換同步,監控其進度非常重要。本文解決了 CSS3 是否提供事件來檢查過渡何時開始或結束的問題。 W3C CSS 過渡草案W3C CSS 過渡草案規定CSS 轉換會觸發對應的 DOM...
    程式設計 發佈於2024-12-18
  • Java 中可以手動釋放記憶體嗎?
    Java 中可以手動釋放記憶體嗎?
    Java 中的手動內存釋放與垃圾回收與C 不同,Java 採用託管內存框架來處理內存分配和釋放由垃圾收集器(GC) 自動執行。這種自動化方法可以提高記憶體利用率並防止困擾 C 程式的記憶體洩漏。 Java 中可以手動釋放記憶體嗎? 由於 Java 的記憶體管理是由GC,它沒有提供像 C 中的 fre...
    程式設計 發佈於2024-12-18
  • Java 1.6 中如何可靠地確定檔案是否為符號連結?
    Java 1.6 中如何可靠地確定檔案是否為符號連結?
    在 Java 1.6 中驗證符號連結確定符號連結的存在對於各種文件處理操作至關重要。在 Java 中,識別符號連結時需要考慮一些潛在問題,特別是在目錄遍歷的上下文中。 檢查符號連結的常見方法是比較文件的絕對路徑和規範路徑。規範路徑表示檔案的標準化路徑,而絕對路徑可能包括符號連結。傳統上,概念是如果這...
    程式設計 發佈於2024-12-17
  • 如何使背景顏色透明,同時保持文字不透明?
    如何使背景顏色透明,同時保持文字不透明?
    背景顏色的不透明度而不影響文本在Web 開發領域,實現透明度通常對於增強視覺吸引力和網站元素的功能。常見的要求是對 div 背景套用透明度,同時保留所包含文字的不透明度。這可能會帶來挑戰,特別是在確保跨瀏覽器相容性方面。 rgba 解決方案最有效且廣泛支持的解決方案是利用「RGBA」(紅、綠、藍、A...
    程式設計 發佈於2024-12-17
  • PHP 字串比較:`==`、`===` 或 `strcmp()` – 您應該使用哪個運算子?
    PHP 字串比較:`==`、`===` 或 `strcmp()` – 您應該使用哪個運算子?
    PHP 中的字串比較:'=='、'===' 或 'strcmp()'? PHP 中的字串比較PHP 可以使用不同的運算子來完成,例如「==」、「===」或「strcmp()」函數。此比較涉及檢查兩個字串是否相等。 '==' 與'...
    程式設計 發佈於2024-12-17
  • 如何自訂操作列的按鈕和外觀?
    如何自訂操作列的按鈕和外觀?
    自訂操作欄的按鈕和外觀要實現所需的自訂操作欄外觀,請考慮以下步驟: 1.建立自訂操作按鈕若要將圖片包含為按鈕,請透過擴充Button類別來定義自訂視圖。然後可以將此自訂視圖顯示在 ActionBar 上,如下所示:<Button android:id="@ id/my_cus...
    程式設計 發佈於2024-12-17
  • 介紹 Laravel 的履歷解析器/CV 解析器
    介紹 Laravel 的履歷解析器/CV 解析器
    照片由 Mohammad Rahmani 在 Unsplash 上拍攝 基於我們的 Resume/CV Parsing AI API 端點的流行,我們專門為您製作了一個專門的輕量級 Laravel 庫。 招募的未來:敏銳、精確且對 Laravel 友好 這個新套件可在 github...
    程式設計 發佈於2024-12-17
  • 如何在 PHP 中重新格式化日期以方便使用者顯示?
    如何在 PHP 中重新格式化日期以方便使用者顯示?
    在PHP 中重新格式化日期使用資料庫中儲存的日期時,通常需要重新格式化它們以便於使用者友好的顯示。對於以「2009-08-12」等格式儲存的日期尤其如此,人類本質上無法讀取這種格式。 為了解決這個問題,PHP 提供了各種工具,使您能夠輕鬆重新格式化日期。一種有效的方法是使用 DateTime 類,它...
    程式設計 發佈於2024-12-17

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3