」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 棘手的 Golang 面試問題 - 部分數據競賽

棘手的 Golang 面試問題 - 部分數據競賽

發佈於2024-11-09
瀏覽:758

Tricky Golang interview questions - Part Data Race

Here is another code review interview question for you. This question is more advanced than the previous ones and is targeted toward a more senior audience. The problem requires knowledge of slices and sharing data between parallel processes.

If you're not familiar with the slices and how they are constructed, please check out my previous article about the Slice Header

What is a Data Race?

A data race occurs when two or more threads (or goroutines, in the case of Go) concurrently access shared memory, and at least one of those accesses is a write operation. If there are no proper synchronization mechanisms (such as locks or channels) in place to manage access, the result can be unpredictable behavior, including corruption of data, inconsistent states, or crashes.

In essence, a data race happens when:

  • Two or more threads (or goroutines) access the same memory location at the same time.
  • At least one of the threads (or goroutines) is writing to that memory.
  • There is no synchronization to control the access to that memory.

Because of this, the order in which the threads or goroutines access or modify the shared memory is unpredictable, leading to non-deterministic behavior that can vary between runs.

      ----------------------        --------------------- 
     | Thread A: Write      |      | Thread B: Read      |
      ----------------------        --------------------- 
     | 1. Reads x           |      | 1. Reads x          |
     | 2. Adds 1 to x       |      |                     |
     | 3. Writes new value  |      |                     |
      ----------------------        --------------------- 

                    Shared variable x
                    (Concurrent access without synchronization)

Here, Thread A is modifying x (writing to it), while Thread B is reading it at the same time. If both threads are running concurrently and there’s no synchronization, Thread B could read x before Thread A has finished updating it. As a result, the data could be incorrect or inconsistent.

Question: One of your teammates submitted the following code for a code review. Please review the code carefully and identify any potential issues.
And here the code that you have to review:

package main  

import (  
    "bufio"  
    "bytes"
    "io"
    "math/rand"
    "time"
)  

func genData() []byte {  
    r := rand.New(rand.NewSource(time.Now().Unix()))  
    buffer := make([]byte, 512)  
    if _, err := r.Read(buffer); err != nil {  
       return nil  
    }  
    return buffer  
}  

func publish(input []byte, output chan



What we have here?

The publish() function is responsible for reading the input data chunk by chunk and sending each chunk to the output channel. It begins by using bytes.NewReader(input) to create a reader from the input data, which allows the data to be read sequentially. A buffer of size 8 is created to hold each chunk of data as it’s being read from the input. During each iteration, reader.Read(buffer) reads up to 8 bytes from the input, and the function then sends a slice of this buffer (buffer[:n]) containing up to 8 bytes to the output channel. The loop continues until reader.Read(buffer) either encounters an error or reaches the end of the input data.

The consume() function handles the data chunks received from the channel. It processes these chunks using a bufio.Scanner, which scans each chunk of data, potentially breaking it into lines or tokens depending on how it’s configured. The variable b := scanner.Bytes() retrieves the current token being scanned. This function represents a basic input processing.

The main() creates a buffered channel chunkChannel with a capacity equal to workersCount, which is set to 4 in this case. The function then launches 4 worker goroutines, each of which will read data from the chunkChannel concurrently. Every time a worker receives a chunk of data, it processes the chunk by calling the consume() function. The publish() function reads the generated data, breaks it into chunks of up to 8 bytes, and sends them to the channel.

The program uses goroutines to create multiple consumers, allowing for concurrent data processing. Each consumer runs in a separate goroutine, processing chunks of data independently.

If you run this code, noting suspicious will happen:

[Running] go run "main.go"

[Done] exited with code=0 in 0.94 seconds

But there is a problem. We have a Data Race Risk. In this code, there’s a potential data race because the publish() function reuses the same buffer slice for each chunk. The consumers are reading from this buffer concurrently, and since slices share underlying memory, multiple consumers could be reading the same memory, leading to a data race. Let's try to use a race detection. Go provides a built-in tool to detect data races: the race detector. You can enable it by running your program with the -race flag:

go run -race main.go

If we add the -race flag to the run command we will receive the following output:

[Running] go run -race "main.go"

==================
WARNING: DATA RACE
Read at 0x00c00011e018 by goroutine 6:
  runtime.slicecopy()
      /GOROOT/go1.22.0/src/runtime/slice.go:325  0x0
  bytes.(*Reader).Read()
      /GOROOT/go1.22.0/src/bytes/reader.go:44  0xcc
  bufio.(*Scanner).Scan()
      /GOROOT/go1.22.0/src/bufio/scan.go:219  0xef4
  main.consume()
      /GOPATH/example/main.go:40  0x140
  main.main.func1()
      /GOPATH/example/main.go:55  0x48

Previous write at 0x00c00011e018 by main goroutine:
  runtime.slicecopy()
      /GOROOT/go1.22.0/src/runtime/slice.go:325  0x0
  bytes.(*Reader).Read()
      /GOROOT/go1.22.0/src/bytes/reader.go:44  0x168
  main.publish()
      /GOPATH/example/main.go:27  0xe4
  main.main()
      /GOPATH/example/main.go:60  0xdc

Goroutine 6 (running) created at:
  main.main()
      /GOPATH/example/main.go:53  0x50
==================
Found 1 data race(s)
exit status 66

[Done] exited with code=0 in 0.94 seconds

The warning you’re seeing is a classic data race detected by Go’s race detector. The warning message indicates that two goroutines are accessing the same memory location (0x00c00011e018) concurrently. One goroutine is reading from this memory, while another goroutine is writing to it at the same time, without proper synchronization.

The first part of the warning tells us that Goroutine 6 (which is one of the worker goroutines in your program) is reading from the memory address 0x00c00011e018 during a call to bufio.Scanner.Scan() inside the consume() function.

Read at 0x00c00011e018 by goroutine 6:
  runtime.slicecopy()
  /GOROOT/go1.22.0/src/runtime/slice.go:325  0x0
  bytes.(*Reader).Read()
  /GOROOT/go1.22.0/src/bytes/reader.go:44  0xcc
  bufio.(*Scanner).Scan()
  /GOROOT/go1.22.0/src/bufio/scan.go:219  0xef4
  main.consume()
  /GOPATH/example/main.go:40  0x140
  main.main.func1()
  /GOPATH/example/main.go:55  0x48

The second part of the warning shows that the main goroutine previously wrote to the same memory location (0x00c00011e018) during a call to bytes.Reader.Read() inside the publish() function.

Previous write at 0x00c00011e018 by main goroutine:
  runtime.slicecopy()
  /GOROOT/go1.22.0/src/runtime/slice.go:325  0x0
  bytes.(*Reader).Read()
  /GOROOT/go1.22.0/src/bytes/reader.go:44  0x168
  main.publish()
  /GOPATH/example/main.go:27  0xe4
  main.main()
  /GOPATH/example/main.go:60  0xdc

The final part of the warning explains that Goroutine 6 was created in the main function.

Goroutine 6 (running) created at:
  main.main()
  /GOPATH/example/main.go:53  0x50

In this case, while one goroutine (Goroutine 6) is reading from the buffer in consume(), the publish() function in the main goroutine is simultaneously writing to the same buffer, leading to the data race.

 -------------------                 -------------------- 
|     Publisher     |               |      Consumer      |
 -------------------                 -------------------- 
        |                                   |
        v                                   |
1. Read data into buffer                    |
        |                                   |
        v                                   |
2. Send slice of buffer to chunkChannel     |
        |                                   |
        v                                   |
  ----------------                          |
 |  chunkChannel  |                         |
  ----------------                          |
        |                                   |
        v                                   |
3. Consume reads from slice                 |
                                            v
                                    4. Concurrent access
                                    (Data Race occurs)

Why the Data Race Occurs

The data race in this code arises because of how Go slices work and how memory is shared between goroutines when a slice is reused. To fully understand this, let’s break it down into two parts: the behavior of the buffer slice and the mechanics of how the race occurs. When you pass a slice like buffer[:n] to a function or channel, what you are really passing is the slice header which contains a reference to the slice’s underlying array. Any modifications to the slice or the underlying array will affect all other references to that slice.

buffer = [ a, b, c, d, e, f, g, h ]  





func publish(input []byte, output chan



If you send buffer[:n] to a channel, both the publish() function and any consumer goroutines will be accessing the same memory. During each iteration, the reader.Read(buffer) function reads up to 8 bytes from the input data into this buffer slice. After reading, the publisher sends buffer[:n] to the output channel, where n is the number of bytes read in the current iteration.

The problem here is that buffer is reused across iterations. Every time reader.Read() is called, it overwrites the data stored in buffer.

  • Iteration 1: publish() function reads the first 8 bytes into buffer and sends buffer[:n] (say, [a, b, c, d, e, f, g, h]) to the channel.
  • Iteration 2: The publish() function overwrites the buffer with the next 8 bytes, let’s say [i, j, k, l, m, n, o, p], and sends buffer[:n] again.

At this point, if one of the worker goroutines is still processing the first chunk, it is now reading stale or corrupted data because the buffer has been overwritten by the second chunk. Reusing a slice neans sharing the same memory.

How to fix the Data Race?

To avoid the race condition, we must ensure that each chunk of data sent to the channel has its own independent memory. This can be achieved by creating a new slice for each chunk and copying the data from the buffer to this new slice. The key fix is to copy the contents of the buffer into a new slice before sending it to the chunkChannel:

chunk := make([]byte, n)    // Step 1: Create a new slice with its own memory
copy(chunk, buffer[:n])     // Step 2: Copy data from buffer to the new slice
output 



Why this fix works? By creating a new slice (chunk) for each iteration, you ensure that each chunk has its own memory. This prevents the consumers from reading from the buffer that the publisher is still modifying. copy() function copies the contents of the buffer into the newly allocated slice (chunk). This decouples the memory used by each chunk from the buffer. Now, when the publisher reads new data into the buffer, it doesn’t affect the chunks that have already been sent to the channel.

 -------------------------             ------------------------ 
|  Publisher (New Memory) |           | Consumers (Read Copy)  |
|  [ a, b, c ] --> chunk1 |           |  Reading: chunk1       |
|  [ d, e, f ] --> chunk2 |           |  Reading: chunk2       |
 -------------------------             ------------------------ 
         ↑                                    ↑
        (1)                                  (2)
   Publisher Creates New Chunk          Consumers Read Safely

This solution works is that it breaks the connection between the publisher and the consumers by eliminating shared memory. Each consumer now works on its own copy of the data, which the publisher does not modify. Here’s how the modified publish() function looks:

func publish(input []byte, output chan



Summary

Slices Are Reference Types:
As mentioned earlier, Go slices are reference types, meaning they point to an underlying array. When you pass a slice to a channel or a function, you’re passing a reference to that array, not the data itself. This is why reusing a slice leads to a data race: multiple goroutines end up referencing and modifying the same memory.

Memory Allocation:
When we create a new slice with make([]byte, n), Go allocates a separate block of memory for that slice. This means the new slice (chunk) has its own backing array, independent of the buffer. By copying the data from buffer[:n] into chunk, we ensure that each chunk has its own private memory space.

Decoupling Memory:
By decoupling the memory of each chunk from the buffer, the publisher can continue to read new data into the buffer without affecting the chunks that have already been sent to the channel. Each chunk now has its own independent copy of the data, so the consumers can process the chunks without interference from the publisher.

Preventing Data Races:
The main source of the data race was the concurrent access to the shared buffer. By creating new slices and copying the data, we eliminate the shared memory, and each goroutine operates on its own data. This removes the possibility of a race condition because there’s no longer any contention over the same memory.

Conclusion

The core of the fix is simple but powerful: by ensuring that each chunk of data has its own memory, we eliminate the shared resource (the buffer) that was causing the data race. This is achieved by copying the data from the buffer into a new slice before sending it to the channel. With this approach, each consumer works on its own copy of the data, independent of the publisher’s actions, ensuring safe concurrent processing without race conditions. This method of decoupling shared memory is a fundamental strategy in concurrent programming. It prevents the unpredictable behavior caused by race conditions and ensures that your Go programs remain safe, predictable, and correct, even when multiple goroutines are accessing data concurrently.

It's that easy!

版本聲明 本文轉載於:https://dev.to/crusty0gphr/tricky-golang-interview-questions-part-7-data-race-753?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • 如何從PHP中的數組中提取隨機元素?
    如何從PHP中的數組中提取隨機元素?
    從陣列中的隨機選擇,可以輕鬆從數組中獲取隨機項目。考慮以下數組:; 從此數組中檢索一個隨機項目,利用array_rand( array_rand()函數從數組返回一個隨機鍵。通過將$項目數組索引使用此鍵,我們可以從數組中訪問一個隨機元素。這種方法為選擇隨機項目提供了一種直接且可靠的方法。
    程式設計 發佈於2025-04-06
  • 為什麼我的CSS背景圖像出現?
    為什麼我的CSS背景圖像出現?
    故障排除:CSS背景圖像未出現 ,您的背景圖像儘管遵循教程說明,但您的背景圖像仍未加載。圖像和样式表位於相同的目錄中,但背景仍然是空白的白色帆布。 而不是不棄用的,您已經使用了CSS樣式: bockent {背景:封閉圖像文件名:背景圖:url(nickcage.jpg); 如果您的html,cs...
    程式設計 發佈於2025-04-06
  • 如何使用不同數量列的聯合數據庫表?
    如何使用不同數量列的聯合數據庫表?
    合併列數不同的表 當嘗試合併列數不同的數據庫表時,可能會遇到挑戰。一種直接的方法是在列數較少的表中,為缺失的列追加空值。 例如,考慮兩個表,表 A 和表 B,其中表 A 的列數多於表 B。為了合併這些表,同時處理表 B 中缺失的列,請按照以下步驟操作: 確定表 B 中缺失的列,並將它們添加到表的...
    程式設計 發佈於2025-04-06
  • 為什麼使用固定定位時,為什麼具有100%網格板柱的網格超越身體?
    為什麼使用固定定位時,為什麼具有100%網格板柱的網格超越身體?
    網格超過身體,用100%grid-template-columns 為什麼在grid-template-colms中具有100%的顯示器,當位置設置為設置的位置時,grid-template-colly修復了? 問題: 考慮以下CSS和html: class =“ snippet-code”> ...
    程式設計 發佈於2025-04-06
  • 如何處理PHP文件系統功能中的UTF-8文件名?
    如何處理PHP文件系統功能中的UTF-8文件名?
    在PHP的Filesystem functions中處理UTF-8 FileNames 在使用PHP的MKDIR函數中含有UTF-8字符的文件很多flusf-8字符時,您可能會在Windows Explorer中遇到comploreer grounder grounder grounder gro...
    程式設計 發佈於2025-04-06
  • 如何在其容器中為DIV創建平滑的左右CSS動畫?
    如何在其容器中為DIV創建平滑的左右CSS動畫?
    通用CSS動畫,用於左右運動 ,我們將探索創建一個通用的CSS動畫,以向左和右移動DIV,從而到達其容器的邊緣。該動畫可以應用於具有絕對定位的任何div,無論其未知長度如何。 問題:使用左直接導致瞬時消失 更加流暢的解決方案:混合轉換和左 [並實現平穩的,線性的運動,我們介紹了線性的轉換。...
    程式設計 發佈於2025-04-06
  • 如何修復\“常規錯誤:2006 MySQL Server在插入數據時已經消失\”?
    如何修復\“常規錯誤:2006 MySQL Server在插入數據時已經消失\”?
    How to Resolve "General error: 2006 MySQL server has gone away" While Inserting RecordsIntroduction:Inserting data into a MySQL database can...
    程式設計 發佈於2025-04-06
  • 為什麼Microsoft Visual C ++無法正確實現兩台模板的實例?
    為什麼Microsoft Visual C ++無法正確實現兩台模板的實例?
    The Mystery of "Broken" Two-Phase Template Instantiation in Microsoft Visual C Problem Statement:Users commonly express concerns that Micro...
    程式設計 發佈於2025-04-06
  • 如何使用PHP從XML文件中有效地檢索屬性值?
    如何使用PHP從XML文件中有效地檢索屬性值?
    從php PHP陷入困境。 使用simplexmlelement :: attributes()函數提供了簡單的解決方案。此函數可訪問對XML元素作為關聯數組的屬性: - > attributes()為$ attributeName => $ attributeValue){ echo...
    程式設計 發佈於2025-04-06
  • 如何有效地轉換PHP中的時區?
    如何有效地轉換PHP中的時區?
    在PHP 利用dateTime對象和functions DateTime對象及其相應的功能別名為時區轉換提供方便的方法。例如: //定義用戶的時區 date_default_timezone_set('歐洲/倫敦'); //創建DateTime對象 $ dateTime = ne...
    程式設計 發佈於2025-04-06
  • 為什麼PHP的DateTime :: Modify('+1個月')會產生意外的結果?
    為什麼PHP的DateTime :: Modify('+1個月')會產生意外的結果?
    使用php dateTime修改月份:發現預期的行為在使用PHP的DateTime類時,添加或減去幾個月可能並不總是會產生預期的結果。正如文檔所警告的那樣,“當心”這些操作的“不像看起來那樣直觀。 考慮文檔中給出的示例:這是內部發生的事情: 現在在3月3日添加另一個月,因為2月在2001年只有2...
    程式設計 發佈於2025-04-06
  • 如何同步迭代並從PHP中的兩個等級陣列打印值?
    如何同步迭代並從PHP中的兩個等級陣列打印值?
    同步的迭代和打印值來自相同大小的兩個數組使用兩個數組相等大小的selectbox時,一個包含country代碼的數組,另一個包含鄉村代碼,另一個包含其相應名稱的數組,可能會因不當提供了exply for for for the uncore for the forsion for for ytry...
    程式設計 發佈於2025-04-06
  • 如何檢查對像是否具有Python中的特定屬性?
    如何檢查對像是否具有Python中的特定屬性?
    方法來確定對象屬性存在尋求一種方法來驗證對像中特定屬性的存在。考慮以下示例,其中嘗試訪問不確定屬性會引起錯誤: >>> a = someClass() >>> A.property Trackback(最近的最新電話): 文件“ ”,第1行, attributeError:SomeClass實...
    程式設計 發佈於2025-04-06
  • 如何正確使用與PDO參數的查詢一樣?
    如何正確使用與PDO參數的查詢一樣?
    在pdo 中使用類似QUERIES在PDO中的Queries時,您可能會遇到類似疑問中描述的問題:此查詢也可能不會返回結果,即使$ var1和$ var2包含有效的搜索詞。錯誤在於不正確包含%符號。 通過將變量包含在$ params數組中的%符號中,您確保將%字符正確替換到查詢中。沒有此修改,PD...
    程式設計 發佈於2025-04-06
  • 如何在JavaScript對像中動態設置鍵?
    如何在JavaScript對像中動態設置鍵?
    在嘗試為JavaScript對象創建動態鍵時,如何使用此Syntax jsObj['key' i] = 'example' 1;不工作。正確的方法採用方括號: jsobj ['key''i] ='example'1; 在JavaScript中,數組是一...
    程式設計 發佈於2025-04-06

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3