在本文中,我將展示如何使用張量流來預測音樂風格。
在我的範例中,我比較了電子音樂和古典音樂。
您可以在我的github上找到代碼:
https://github.com/victordalet/sound_to_partition
第一步,您需要建立一個資料集資料夾,並在裡面新增一個音樂風格資料夾,例如我新增一個 techno 資料夾和 classic 資料夾,其中放置我的 wav 歌曲。
我建立一個訓練文件,參數 max_epochs 需要完成。
修改建構函式中與資料集資料夾中的目錄對應的類別。
在載入和處理方法中,我從不同的目錄檢索wav檔案並取得頻譜圖。
出於訓練目的,我使用 Keras 卷積和模型。
import os import sys from typing import List import librosa import numpy as np from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from tensorflow.image import resize class Train: def __init__(self): self.X_train = None self.X_test = None self.y_train = None self.y_test = None self.data_dir: str = 'dataset' self.classes: List[str] = ['techno','classic'] self.max_epochs: int = int(sys.argv[1]) @staticmethod def load_and_preprocess_data(data_dir, classes, target_shape=(128, 128)): data = [] labels = [] for i, class_name in enumerate(classes): class_dir = os.path.join(data_dir, class_name) for filename in os.listdir(class_dir): if filename.endswith('.wav'): file_path = os.path.join(class_dir, filename) audio_data, sample_rate = librosa.load(file_path, sr=None) mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate) mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape) data.append(mel_spectrogram) labels.append(i) return np.array(data), np.array(labels) def create_model(self): data, labels = self.load_and_preprocess_data(self.data_dir, self.classes) labels = to_categorical(labels, num_classes=len(self.classes)) # Convert labels to one-hot encoding self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(data, labels, test_size=0.2, random_state=42) input_shape = self.X_train[0].shape input_layer = Input(shape=input_shape) x = Conv2D(32, (3, 3), activation='relu')(input_layer) x = MaxPooling2D((2, 2))(x) x = Conv2D(64, (3, 3), activation='relu')(x) x = MaxPooling2D((2, 2))(x) x = Flatten()(x) x = Dense(64, activation='relu')(x) output_layer = Dense(len(self.classes), activation='softmax')(x) self.model = Model(input_layer, output_layer) self.model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) def train_model(self): self.model.fit(self.X_train, self.y_train, epochs=self.max_epochs, batch_size=32, validation_data=(self.X_test, self.y_test)) test_accuracy = self.model.evaluate(self.X_test, self.y_test, verbose=0) print(test_accuracy[1]) def save_model(self): self.model.save('weight.h5') if __name__ == '__main__': train = Train() train.create_model() train.train_model() train.save_model()
為了測試和使用該模型,我創建了此類來檢索權重並預測音樂的風格。
不要忘記將正確的類別加入建構函式中。
from typing import List import librosa import numpy as np from tensorflow.keras.models import load_model from tensorflow.image import resize import tensorflow as tf class Test: def __init__(self, audio_file_path: str): self.model = load_model('weight.h5') self.target_shape = (128, 128) self.classes: List[str] = ['techno','classic'] self.audio_file_path: str = audio_file_path def test_audio(self, file_path, model): audio_data, sample_rate = librosa.load(file_path, sr=None) mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate) mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), self.target_shape) mel_spectrogram = tf.reshape(mel_spectrogram, (1,) self.target_shape (1,)) predictions = model.predict(mel_spectrogram) class_probabilities = predictions[0] predicted_class_index = np.argmax(class_probabilities) return class_probabilities, predicted_class_index def test(self): class_probabilities, predicted_class_index = self.test_audio(self.audio_file_path, self.model) for i, class_label in enumerate(self.classes): probability = class_probabilities[i] print(f'Class: {class_label}, Probability: {probability:.4f}') predicted_class = self.classes[predicted_class_index] accuracy = class_probabilities[predicted_class_index] print(f'The audio is classified as: {predicted_class}') print(f'Accuracy: {accuracy:.4f}')
免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。
Copyright© 2022 湘ICP备2022001581号-3