八皇后問題是找到一個解決方案,在棋盤的每一行放置一個皇后,使得兩個皇后不能互相攻擊。該問題可以使用遞歸來解決。在本節中,我們將介紹一種常見的演算法設計技術,稱為回溯來解決這個問題。回溯方法逐步搜尋候選解決方案,一旦確定
就放棄該選項
候選方案不可能是有效的解決方案,然後尋找新的候選方案。
可以使用二維陣列來表示棋盤。然而,由於每一行只能有一個皇后,因此使用一維數組來表示皇后在該行中的位置就足夠了。因此,您可以將 queens 陣列定義為:
int[] 皇后 = new int[8];
將j賦值給queens[i],表示在行i和列j中放置一個皇后。下圖(a)顯示了下圖(b)棋盤的queens陣列的內容。
搜尋從 k = 0 的第一行開始,其中 k 是正在考慮的當前行的索引。此演算法檢查是否可以按 _j = 0, 1, ... , 7 的順序將皇后放置在行中的第 j_ 列中。搜尋實現如下:
下面的程式碼給出了顯示八皇后問題解決方案的程式。
package application; import javafx.application.Application; import javafx.geometry.Pos; import javafx.stage.Stage; import javafx.scene.Scene; import javafx.scene.control.Label; import javafx.scene.image.Image; import javafx.scene.image.ImageView; import javafx.scene.layout.GridPane; public class EightQueens extends Application { public static final int SIZE = 8; // The size of the chess board // queens are placed at (i, queens[i]) // -1 indicates that no queen is currently placed in the ith row // Initially, place a queen at (0, 0) in the 0th row private int[] queens = {-1, -1, -1, -1, -1, -1, -1, -1}; @Override // Override the start method in the Application class public void start(Stage primaryStage) { search(); // Search for a solution // Display chess board GridPane chessBoard = new GridPane(); chessBoard.setAlignment(Pos.CENTER); Label[][] labels = new Label[SIZE][SIZE]; for(int i = 0; i = 0 && k程式呼叫search()(第20行)來搜尋解決方案。最初,任何行中都沒有放置皇后(第 16 行)。現在,搜尋從第一行 k = 0(第 53 行)開始,並找到皇后的位置(第 56 行)。如果成功,請將其放入該行(第 61 行)並考慮下一行(第 62 行)。如果不成功,則回溯到上一行(第 58-59 行)。
findPosition(k) 方法在從 queen[k] 1 開始的行 k 中搜尋放置皇后的可能位置(第 73 行) 。它檢查是否可以將皇后放置在 start, start 1, 處。 。 。 、7,依此順序(第 75-78 行)。如果可能,返回列索引(第77行);否則,返回 -1(第 80 行)。
調用isValid(row, column)方法檢查在指定位置放置皇后是否會與先前放置的皇后發生衝突(第76行)。它確保沒有皇后被放置在同一列(第86行)、左上角對角線(第87行)或右上角對角線(第88行),如下圖所示。
免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。
Copyright© 2022 湘ICP备2022001581号-3