」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > Python 程式碼片段

Python 程式碼片段

發佈於2024-11-01
瀏覽:360

Python Code Snippets

Arrays

Lists

# Creating a list
my_list = []
my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

# List of different data types
mixed_list = [1, "hello", 3.14, True]

# Accessing elements
print(my_list[0])  # Output: 1
print(my_list[-1]) # Output: 5

# Append to the end
my_list.append(6)

# Insert at a specific position
my_list.insert(2, 10)

# Find an element in an array
index=my_list.find(element)

# Remove by value
my_list.remove(10)

# Remove by index
removed_element = my_list.pop(2)

# Length of the list
print(len(my_list))

# Slicing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# sequence[start:stop:step]

print(my_list[1:4])  # Output: [1, 2, 3]
print(my_list[5:])  # Output: [5, 6, 7, 8, 9]
print(my_list[:5])  # Output: [0, 1, 2, 3, 4]
print(my_list[::2])  # Output: [0, 2, 4, 6, 8]
print(my_list[-4:])  # Output: [6, 7, 8, 9]
print(my_list[:-4])  # Output: [0, 1, 2, 3, 4, 5]
print(my_list[::-1])  # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
print(my_list[8:2:-2])  # Output: [8, 6, 4]
print(my_list[1:8:2])  # Output: [1, 3, 5, 7]
print(my_list[-2:-7:-1])  # Output: [8, 7, 6, 5, 4]

# Reversing a list
my_list.reverse()

# Sorting a list
my_list.sort()

Permutation & Combination

import itertools

# Example list
data = [1, 2, 3]

# Generating permutations of the entire list
perms = list(itertools.permutations(data))
print(perms)
# Output: [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

# Generating permutations of length 2
perms_length_2 = list(itertools.permutations(data, 2))
print(perms_length_2)
# Output: [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]

combinations(iterable, r) #order does not matter

Generating Permutations Manually
You can also generate permutations manually using recursion. Here’s a simple implementation:

def permute(arr):
    result = []

    # Base case: if the list is empty, return an empty list
    if len(arr) == 0:
        return [[]]

    # Recursive case
    for i in range(len(arr)):
        elem = arr[i]
        rest = arr[:i]   arr[i 1:]
        for p in permute(rest):
            result.append([elem]   p)

    return result

Stack

(list can be used as stack)

st=[]
st.append()
st.pop()
top_element = stack[-1]

Tips

1) Strip:
It is used to remove leading and trailing whitespace (or other specified characters) from a string

#EX. (1,2) to 1,2
s.strip('()')

2) Don't use normal dictionary

from collections import defaultdict
dictionary=defaultdict(int)

3) Important checking and convertion

s.isdigit()
s.isalpha()
s.isalnum()
s.islower()
s.isupper()
s.lower()
s.upper()

4) Non-Trivial

round(number, decimal_digits)
ord(each)-ord('a') 1 # value of an alphabet
#/ (Floating-Point Division)
#// (Floor Division)
maxim = float('-inf')
minim = float('inf')
unique_lengths.sort(reverse=True)
s.count('x')

list1 = [1, 2, 3]
iterable = [4, 5, 6]
list1.extend(iterable)

position.replace('(', '').replace(')', '')

expression = "2   3 * 4"
result = eval(expression)
print(result) 

#Determinant
import numpy as 
arr=[[1,2,3],[3,4,5],[5,6,7]]
print(np.linalg.det(np.array(arr)))

Sorted

my_list = [3, 1, 4, 1, 5]
sorted_list = sorted(my_list)

my_tuple = (3, 1, 4, 1, 5)
sorted_list = sorted(my_tuple)

my_dict = {'apple': 3, 'banana': 1, 'cherry': 2}
sorted_keys = sorted(my_dict)

my_list = [3, 1, 4, 1, 5]
sorted_list = sorted(my_list, reverse=True)

Enumerate

my_list = ['a', 'b', 'c']
for index, value in enumerate(my_list):
    print(index, value)

Pass by Object Reference

Immutable Types (like integers, strings, tuples):

def modify_immutable(x):
    x = 10  # Rebinding the local variable to a new object
    print("Inside function:", x)

a = 5
modify_immutable(a) #prints 10
print("Outside function:", a) #prints 5

Mutable Types (like lists, dictionaries, sets):

def modify_mutable(lst):
    lst.append(4)  # Modifying the original list object
    print("Inside function:", lst)

my_list = [1, 2, 3]
modify_mutable(my_list) # [1,2,3]
print("Outside function:", my_list) # [1,2,3,4]

Numpy arrays (for numerical operations)

import numpy as np

# Creating a 1D array
arr_1d = np.array([1, 2, 3, 4, 5])

# Creating a 2D array
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])

# Creating an array filled with zeros
zeros = np.zeros((3, 4))

# Creating an array filled with ones
ones = np.ones((2, 3))

# Creating an array with a range of values
range_arr = np.arange(0, 10, 2)

# Creating an array with evenly spaced values
linspace_arr = np.linspace(0, 1, 5)

# Creating an identity matrix
identity_matrix = np.eye(3)

# Shape of the array
shape = arr_2d.shape  # Output: (2, 3)

# Size of the array (total number of elements)
size = arr_2d.size  # Output: 6

# Element-wise addition
arr_add = arr_1d   5  # Output: array([6, 7, 8, 9, 10])

# Element-wise subtraction
arr_sub = arr_1d - 2  # Output: array([ -1, 0, 1, 2, 3])

# Element-wise multiplication
arr_mul = arr_1d * 2  # Output: array([ 2, 4, 6, 8, 10])

# Element-wise division
arr_div = arr_1d / 2  # Output: array([0.5, 1. , 1.5, 2. , 2.5])

# Sum
total_sum = np.sum(arr_2d)  # Output: 21

# Mean
mean_value = np.mean(arr_2d)  # Output: 3.5

# Standard deviation
std_dev = np.std(arr_2d)  # Output: 1.707825127659933

# Maximum and minimum
max_value = np.max(arr_2d)  # Output: 6
min_value = np.min(arr_2d)  # Output: 1

# Reshaping
reshaped_arr = arr_1d.reshape((5, 1))

# Flattening
flattened_arr = arr_2d.flatten()

# Transposing
transposed_arr = arr_2d.T

# Indexing
element = arr_2d[1, 2]  # Output: 6

# Slicing
subarray = arr_2d[0:2, 1:3]  # Output: array([[2, 3], [5, 6]])

Astype

It is a function in NumPy used to convert a numpy array to different data type.

# Datatypes: np.int32,np.float32,np.float64,np.str_
import numpy as np

# Create an integer array
int_array = np.array([1, 2, 3, 4, 5], dtype=np.int32)

# Convert to float
float_array = int_array.astype(np.float32)

print("Original array:", int_array)
print("Converted array:", float_array)

Reshape

It is a powerful tool for changing the shape of an array without altering its data

import numpy as np

# Create a 1D array
array = np.arange(12)

# Reshape to a 2D array (3 rows x 4 columns)
reshaped_array = array.reshape((3, 4))

Matplotlib

import numpy as np
import matplotlib.pyplot as plt

# Create a random 2D array
data = np.random.rand(10, 10)

# Create a figure with a specific size and resolution
plt.figure(figsize=(8, 6), dpi=100)

# Display the 2D array as an image
plt.imshow(data, cmap='viridis', interpolation='nearest')

# Add a color bar to show the scale of values
plt.colorbar()

# Show the plot
plt.show()

Dictionary

# Creating an empty dictionary
# Maintains ascending order like map in cpp
my_dict = {}

# Creating a dictionary with initial values
my_dict = {'name': 'Alice', 'age': 25, 'city': 'New York'}

# Creating a dictionary using the dict() function
my_dict = dict(name='Alice', age=25, city='New York')

# Accessing a value by key
name = my_dict['name']  # Output: 'Alice'

# Using the get() method to access a value
age = my_dict.get('age')  # Output: 25
country = my_dict.get('country')  # Output: None

# Adding a new key-value pair
my_dict['email'] = '[email protected]'

# Updating an existing value
my_dict['age'] = 26

# Removing a key-value pair using pop()
age = my_dict.pop('age')  # Removes 'age' and returns its value

# Getting all keys in the dictionary
keys = my_dict.keys()  # Output: dict_keys(['name', 'email'])

# Getting all values in the dictionary
values = my_dict.values()  # Output: dict_values(['Alice', '[email protected]'])

# Iterating over keys
for key in my_dict:
    print(key)

# Iterating over values
for value in my_dict.values():
    print(value)

# Iterating over key-value pairs
for key, value in my_dict.items():
    print(f"{key}: {value}")

Defaultdict

from collections import defaultdict

d = defaultdict(int)

# Initializes 0 to non-existent keys
d['apple']  = 1
d['banana']  = 2

Set

# Creating an empty set
my_set = set()

# Creating a set with initial values
my_set = {1, 2, 3, 4, 5}

# Creating a set from a list
my_list = [1, 2, 3, 4, 5]
my_set = set(my_list)

# Creating a set from a string
my_set = set('hello')  # Output: {'e', 'h', 'l', 'o'}

# Adding an element to a set
my_set.add(6)  # my_set becomes {1, 2, 3, 4, 5, 6}

# Removing an element from a set (raises KeyError if not found)
my_set.remove(3)  # my_set becomes {1, 2, 4, 5, 6}

# Removing and returning an arbitrary element from the set
element = my_set.pop()  # Returns and removes an arbitrary element

String

# Single quotes
str1 = 'Hello'

# Double quotes
str2 = "World"

# Triple quotes for multi-line strings
str3 = '''This is a 
multi-line string.'''

# Raw strings (ignores escape sequences)
raw_str = r'C:\Users\Name'

str1 = 'Hello'

# Accessing a single character
char = str1[1]  # 'e'

# Accessing a substring (slicing)
substring = str1[1:4]  # 'ell'

# Negative indexing
last_char = str1[-1]  # 'o'

# Using   operator
concatenated = 'Hello'   ' '   'World'  # 'Hello World'

# Using join method
words = ['Hello', 'World']
concatenated = ' '.join(words)  # 'Hello World'

name = 'Alice'
age = 25

# String formatting
formatted_str = f'My name is {name} and I am {age} years old.'

# Convert to uppercase
upper_str = str1.upper()  # 'HELLO WORLD'

# Convert to lowercase
lower_str = str1.lower()  # 'hello world'

# Convert to capitalize
capital_str = str1.capitalize()  # 'Hello world'

str1 = '  Hello World  '

# Remove leading and trailing whitespace
trimmed = str1.strip()  # 'Hello World'

str1 = 'Hello World Python'

# Split the string into a list of substrings
split_list = str1.split()  # ['Hello', 'World', 'Python']

# Split the string with a specific delimiter
split_list = str1.split(' ')  # ['Hello', 'World', 'Python']

# Join a list of strings into a single string
joined_str = ' '.join(split_list)  # 'Hello World Python'

str1 = 'Hello World'

# Find the position of a substring
pos = str1.find('World')  # 6


str1 = 'Hello123'

# Check if all characters are alphanumeric
is_alnum = str1.isalnum()  # True

# Check if all characters are alphabetic
is_alpha = str1.isalpha()  # False

# Check if all characters are digits
is_digit = str1.isdigit()  # False

# Check if all characters are lowercase
is_lower = str1.islower()  # False

# Check if all characters are uppercase
is_upper = str1.isupper()  # False

Stay Connected!
If you enjoyed this post, don’t forget to follow me on social media for more updates and insights:

Twitter: madhavganesan
Instagram: madhavganesan
LinkedIn: madhavganesan

版本聲明 本文轉載於:https://dev.to/madgan95/python-code-snippets-1pkl?1如有侵犯,請洽[email protected]刪除
最新教學 更多>
  • 圖片在Chrome中為何仍有邊框? `border: none;`無效解決方案
    圖片在Chrome中為何仍有邊框? `border: none;`無效解決方案
    在chrome 在使用Chrome and IE9中的圖像時遇到的一個頻繁的問題是圍繞圖像的持續薄薄邊框,儘管指定了圖像,儘管指定了;和“邊境:無;”在CSS中。要解決此問題,請考慮以下方法: Chrome具有忽略“ border:none; none;”的已知錯誤,風格。要解決此問題,請使用以下...
    程式設計 發佈於2025-07-03
  • Go語言垃圾回收如何處理切片內存?
    Go語言垃圾回收如何處理切片內存?
    Garbage Collection in Go Slices: A Detailed AnalysisIn Go, a slice is a dynamic array that references an underlying array.使用切片時,了解垃圾收集行為至關重要,以避免潛在的內存洩...
    程式設計 發佈於2025-07-03
  • Java中如何使用觀察者模式實現自定義事件?
    Java中如何使用觀察者模式實現自定義事件?
    在Java 中創建自定義事件的自定義事件在許多編程場景中都是無關緊要的,使組件能夠基於特定的觸發器相互通信。本文旨在解決以下內容:問題語句我們如何在Java中實現自定義事件以促進基於特定事件的對象之間的交互,定義了管理訂閱者的類界面。 以下代碼片段演示瞭如何使用觀察者模式創建自定義事件: args...
    程式設計 發佈於2025-07-03
  • 如何使用Python理解有效地創建字典?
    如何使用Python理解有效地創建字典?
    在python中,詞典綜合提供了一種生成新詞典的簡潔方法。儘管它們與列表綜合相似,但存在一些顯著差異。 與問題所暗示的不同,您無法為鑰匙創建字典理解。您必須明確指定鍵和值。 For example:d = {n: n**2 for n in range(5)}This creates a dict...
    程式設計 發佈於2025-07-03
  • 如何從PHP中的Unicode字符串中有效地產生對URL友好的sl。
    如何從PHP中的Unicode字符串中有效地產生對URL友好的sl。
    為有效的slug生成首先,該函數用指定的分隔符替換所有非字母或數字字符。此步驟可確保slug遵守URL慣例。隨後,它採用ICONV函數將文本簡化為us-ascii兼容格式,從而允許更廣泛的字符集合兼容性。 接下來,該函數使用正則表達式刪除了不需要的字符,例如特殊字符和空格。此步驟可確保slug僅包...
    程式設計 發佈於2025-07-03
  • 如何在無序集合中為元組實現通用哈希功能?
    如何在無序集合中為元組實現通用哈希功能?
    在未訂購的集合中的元素要糾正此問題,一種方法是手動為特定元組類型定義哈希函數,例如: template template template 。 struct std :: hash { size_t operator()(std :: tuple const&tuple)const {...
    程式設計 發佈於2025-07-03
  • 如何使用Python有效地以相反順序讀取大型文件?
    如何使用Python有效地以相反順序讀取大型文件?
    在python 中,如果您使用一個大文件,並且需要從最後一行讀取其內容,則在第一行到第一行,Python的內置功能可能不合適。這是解決此任務的有效解決方案:反向行讀取器生成器 == ord('\ n'): 緩衝區=緩衝區[:-1] ...
    程式設計 發佈於2025-07-03
  • Python元類工作原理及類創建與定制
    Python元類工作原理及類創建與定制
    python中的metaclasses是什麼? Metaclasses負責在Python中創建類對象。就像類創建實例一樣,元類也創建類。他們提供了對類創建過程的控制層,允許自定義類行為和屬性。 在Python中理解類作為對象的概念,類是描述用於創建新實例或對象的藍圖的對象。這意味著類本身是使用...
    程式設計 發佈於2025-07-03
  • 如何使用PHP從XML文件中有效地檢索屬性值?
    如何使用PHP從XML文件中有效地檢索屬性值?
    從php $xml = simplexml_load_file($file); foreach ($xml->Var[0]->attributes() as $attributeName => $attributeValue) { echo $attributeName,...
    程式設計 發佈於2025-07-03
  • 為什麼我的CSS背景圖像出現?
    為什麼我的CSS背景圖像出現?
    故障排除:CSS背景圖像未出現 ,您的背景圖像儘管遵循教程說明,但您的背景圖像仍未加載。圖像和样式表位於相同的目錄中,但背景仍然是空白的白色帆布。 而不是不棄用的,您已經使用了CSS樣式: bockent {背景:封閉圖像文件名:背景圖:url(nickcage.jpg); 如果您的html,cs...
    程式設計 發佈於2025-07-03
  • 為什麼不````''{margin:0; }`始終刪除CSS中的最高邊距?
    為什麼不````''{margin:0; }`始終刪除CSS中的最高邊距?
    在CSS 問題:不正確的代碼: 全球範圍將所有餘量重置為零,如提供的代碼所建議的,可能會導致意外的副作用。解決特定的保證金問題是更建議的。 例如,在提供的示例中,將以下代碼添加到CSS中,將解決餘量問題: body H1 { 保證金頂:-40px; } 此方法更精確,避免了由全局保證金重置...
    程式設計 發佈於2025-07-03
  • Java的Map.Entry和SimpleEntry如何簡化鍵值對管理?
    Java的Map.Entry和SimpleEntry如何簡化鍵值對管理?
    A Comprehensive Collection for Value Pairs: Introducing Java's Map.Entry and SimpleEntryIn Java, when defining a collection where each element com...
    程式設計 發佈於2025-07-03
  • 如何干淨地刪除匿名JavaScript事件處理程序?
    如何干淨地刪除匿名JavaScript事件處理程序?
    刪除匿名事件偵聽器將匿名事件偵聽器添加到元素中會提供靈活性和簡單性,但是當要刪除它們時,可以構成挑戰,而無需替換元素本身就可以替換一個問題。 element? element.addeventlistener(event,function(){/在這里工作/},false); 要解決此問題,請考...
    程式設計 發佈於2025-07-03
  • \“(1)vs.(;;):編譯器優化是否消除了性能差異?\”
    \“(1)vs.(;;):編譯器優化是否消除了性能差異?\”
    答案: 在大多數現代編譯器中,while(1)和(1)和(;;)之間沒有性能差異。編譯器: perl: 1 輸入 - > 2 2 NextState(Main 2 -E:1)V-> 3 9 Leaveloop VK/2-> A 3 toterloop(next-> 8 last-> 9 ...
    程式設計 發佈於2025-07-03
  • 在程序退出之前,我需要在C ++中明確刪除堆的堆分配嗎?
    在程序退出之前,我需要在C ++中明確刪除堆的堆分配嗎?
    在C中的顯式刪除 在C中的動態內存分配時,開發人員通常會想知道是否有必要在heap-procal extrable exit exit上進行手動調用“ delete”操作員,但開發人員通常會想知道是否需要手動調用“ delete”操作員。本文深入研究了這個主題。 在C主函數中,使用了動態分配變量(...
    程式設計 發佈於2025-07-03

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3