Keras 訓練資料差異
在按照官方TensorFlow 指南使用Keras 建立神經網路時,您注意到該模型僅使用儘管有60,000個條目,但訓練期間可用資料集的一部分。
了解批量大小
模型擬合期間顯示的數字 1875 並不表示訓練樣本,而是表示批次數量。 model.fit 方法有一個可選參數,batch_size,它決定訓練期間同時處理的資料點的數量。
如果不指定batch_size,則預設值為 32。在本例中,總資料集為60,000 張圖像,批次數變為:
60000 / 32 = 1875
因此,雖然有60,000 個資料點,但模型實際上訓練了1875 個批次,每個批次包含32 個資料點。這是減少記憶體佔用並提高訓練速度的常見做法。
調整批次大小
要在訓練期間使用整個資料集而不進行批次處理,您可以指定model.fit 方法中的 batch_size 為 60000。但是,這可能會減慢訓練速度並需要更多記憶體。
或者,您可以調整batch_size以在訓練效率和記憶體利用率之間找到折衷方案。例如,您可以將其設定為 1024 或 2048,這仍然會顯著減少批次數量,而不會犧牲太多效能。
免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。
Copyright© 2022 湘ICP备2022001581号-3