」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 全面的 Python 資料結構備忘單

全面的 Python 資料結構備忘單

發佈於2024-08-02
瀏覽:747

Comprehensive Python Data Structures Cheat sheet

Comprehensive Python Data Structures Cheat sheet

Table of Contents

  1. Lists
  2. Tuples
  3. Sets
  4. Dictionaries
  5. Strings
  6. Arrays
  7. Stacks
  8. Queues
  9. Linked Lists
  10. Trees
  11. Heaps
  12. Graphs
  13. Advanced Data Structures

Lists

Lists are ordered, mutable sequences.

Creation

empty_list = []
list_with_items = [1, 2, 3]
list_from_iterable = list("abc")
list_comprehension = [x for x in range(10) if x % 2 == 0]

Common Operations

# Accessing elements
first_item = my_list[0]
last_item = my_list[-1]

# Slicing
subset = my_list[1:4]  # Elements 1 to 3
reversed_list = my_list[::-1]

# Adding elements
my_list.append(4)  # Add to end
my_list.insert(0, 0)  # Insert at specific index
my_list.extend([5, 6, 7])  # Add multiple elements

# Removing elements
removed_item = my_list.pop()  # Remove and return last item
my_list.remove(3)  # Remove first occurrence of 3
del my_list[0]  # Remove item at index 0

# Other operations
length = len(my_list)
index = my_list.index(4)  # Find index of first occurrence of 4
count = my_list.count(2)  # Count occurrences of 2
my_list.sort()  # Sort in place
sorted_list = sorted(my_list)  # Return new sorted list
my_list.reverse()  # Reverse in place

Advanced Techniques

# List as stack
stack = [1, 2, 3]
stack.append(4)  # Push
top_item = stack.pop()  # Pop

# List as queue (not efficient, use collections.deque instead)
queue = [1, 2, 3]
queue.append(4)  # Enqueue
first_item = queue.pop(0)  # Dequeue

# Nested lists
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flattened = [item for sublist in matrix for item in sublist]

# List multiplication
repeated_list = [0] * 5  # [0, 0, 0, 0, 0]

# List unpacking
a, *b, c = [1, 2, 3, 4, 5]  # a=1, b=[2, 3, 4], c=5

Tuples

Tuples are ordered, immutable sequences.

Creation

empty_tuple = ()
single_item_tuple = (1,)  # Note the comma
tuple_with_items = (1, 2, 3)
tuple_from_iterable = tuple("abc")

Common Operations

# Accessing elements (similar to lists)
first_item = my_tuple[0]
last_item = my_tuple[-1]

# Slicing (similar to lists)
subset = my_tuple[1:4]

# Other operations
length = len(my_tuple)
index = my_tuple.index(2)
count = my_tuple.count(3)

# Tuple unpacking
a, b, c = (1, 2, 3)

Advanced Techniques

# Named tuples
from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(11, y=22)
print(p.x, p.y)

# Tuple as dictionary keys (immutable, so allowed)
dict_with_tuple_keys = {(1, 2): 'value'}

Sets

Sets are unordered collections of unique elements.

Creation

empty_set = set()
set_with_items = {1, 2, 3}
set_from_iterable = set([1, 2, 2, 3, 3])  # {1, 2, 3}
set_comprehension = {x for x in range(10) if x % 2 == 0}

Common Operations

# Adding elements
my_set.add(4)
my_set.update([5, 6, 7])

# Removing elements
my_set.remove(3)  # Raises KeyError if not found
my_set.discard(3)  # No error if not found
popped_item = my_set.pop()  # Remove and return an arbitrary element

# Other operations
length = len(my_set)
is_member = 2 in my_set

# Set operations
union = set1 | set2
intersection = set1 & set2
difference = set1 - set2
symmetric_difference = set1 ^ set2

Advanced Techniques

# Frozen sets (immutable)
frozen = frozenset([1, 2, 3])

# Set comparisons
is_subset = set1 = set2
is_disjoint = set1.isdisjoint(set2)

# Set of sets (requires frozenset)
set_of_sets = {frozenset([1, 2]), frozenset([3, 4])}

Dictionaries

Dictionaries are mutable mappings of key-value pairs.

Creation

empty_dict = {}
dict_with_items = {'a': 1, 'b': 2, 'c': 3}
dict_from_tuples = dict([('a', 1), ('b', 2), ('c', 3)])
dict_comprehension = {x: x**2 for x in range(5)}

Common Operations

# Accessing elements
value = my_dict['key']
value = my_dict.get('key', default_value)

# Adding/Updating elements
my_dict['new_key'] = value
my_dict.update({'key1': value1, 'key2': value2})

# Removing elements
del my_dict['key']
popped_value = my_dict.pop('key', default_value)
last_item = my_dict.popitem()  # Remove and return an arbitrary key-value pair

# Other operations
keys = my_dict.keys()
values = my_dict.values()
items = my_dict.items()
length = len(my_dict)
is_key_present = 'key' in my_dict

Advanced Techniques

# Dictionary unpacking
merged_dict = {**dict1, **dict2}

# Default dictionaries
from collections import defaultdict
dd = defaultdict(list)
dd['key'].append(1)  # No KeyError

# Ordered dictionaries (Python 3.7  dictionaries are ordered by default)
from collections import OrderedDict
od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])

# Counter
from collections import Counter
c = Counter(['a', 'b', 'c', 'a', 'b', 'b'])
print(c.most_common(2))  # [('b', 3), ('a', 2)]

Strings

Strings are immutable sequences of Unicode characters.

Creation

single_quotes = 'Hello'
double_quotes = "World"
triple_quotes = '''Multiline
string'''
raw_string = r'C:\Users\name'
f_string = f"The answer is {40   2}"

Common Operations

# Accessing characters
first_char = my_string[0]
last_char = my_string[-1]

# Slicing (similar to lists)
substring = my_string[1:4]

# String methods
upper_case = my_string.upper()
lower_case = my_string.lower()
stripped = my_string.strip()
split_list = my_string.split(',')
joined = ', '.join(['a', 'b', 'c'])

# Other operations
length = len(my_string)
is_substring = 'sub' in my_string
char_count = my_string.count('a')

Advanced Techniques

# String formatting
formatted = "{} {}".format("Hello", "World")
formatted = "%s %s" % ("Hello", "World")

# Regular expressions
import re
pattern = r'\d '
matches = re.findall(pattern, my_string)

# Unicode handling
unicode_string = u'\u0061\u0062\u0063'

Arrays

Arrays are compact sequences of numeric values (from the array module).

Creation and Usage

from array import array
int_array = array('i', [1, 2, 3, 4, 5])
float_array = array('f', (1.0, 1.5, 2.0, 2.5))

# Operations (similar to lists)
int_array.append(6)
int_array.extend([7, 8, 9])
popped_value = int_array.pop()

Stacks

Stacks can be implemented using lists or collections.deque.

Implementation and Usage

# Using list
stack = []
stack.append(1)  # Push
stack.append(2)
top_item = stack.pop()  # Pop

# Using deque (more efficient)
from collections import deque
stack = deque()
stack.append(1)  # Push
stack.append(2)
top_item = stack.pop()  # Pop

Queues

Queues can be implemented using collections.deque or queue.Queue.

Implementation and Usage

# Using deque
from collections import deque
queue = deque()
queue.append(1)  # Enqueue
queue.append(2)
first_item = queue.popleft()  # Dequeue

# Using Queue (thread-safe)
from queue import Queue
q = Queue()
q.put(1)  # Enqueue
q.put(2)
first_item = q.get()  # Dequeue

Linked Lists

Python doesn't have a built-in linked list, but it can be implemented.

Simple Implementation

class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

class LinkedList:
    def __init__(self):
        self.head = None

    def append(self, data):
        if not self.head:
            self.head = Node(data)
            return
        current = self.head
        while current.next:
            current = current.next
        current.next = Node(data)

Trees

Trees can be implemented using custom classes.

Simple Binary Tree Implementation

class TreeNode:
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None

class BinaryTree:
    def __init__(self, root):
        self.root = TreeNode(root)

    def insert(self, value):
        self._insert_recursive(self.root, value)

    def _insert_recursive(self, node, value):
        if value 



Heaps

Heaps can be implemented using the heapq module.

Usage

import heapq

# Create a heap
heap = []
heapq.heappush(heap, 3)
heapq.heappush(heap, 1)
heapq.heappush(heap, 4)

# Pop smallest item
smallest = heapq.heappop(heap)

# Create a heap from a list
my_list = [3, 1, 4, 1, 5, 9]
heapq.heapify(my_list)

Graphs

Graphs can be implemented using dictionaries.

Simple Implementation

class Graph:
    def __init__(self):
        self.graph = {}

    def add_edge(self, u, v):
        if u not in self.graph:
            self.graph[u] = []
        self.graph[u].append(v)

    def bfs(self, start):
        visited = set()
        queue = [start]
        visited.add(start)
        while queue:
            vertex = queue.pop(0)
            print(vertex, end=' ')
            for neighbor in self.graph.get(vertex, []):
                if neighbor not in visited:
                    visited.add(neighbor)
                    queue.append(neighbor)

Advanced Data Structures

Trie

class TrieNode:
    def __init__(self):
        self.children = {}
        self.is_end = False

class Trie:
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        node = self.root
        for char in word:
            if char not in node.children:
                node.children[char] = TrieNode()
            node = node.children[char]
        node.is_end = True

    def search(self, word):
        node = self.root
        for char in word:
            if char not in node.children:
                return False
            node = node.children[char]
        return node.is_end

Disjoint Set (Union-Find)

class DisjointSet:
    def __init__(self, vertices):
        self.parent = {v: v for v in vertices}
        self.rank = {v: 0 for v in vertices}

    def find(self, item):
        if self.parent[item] != item:
            self.parent[item] = self.find(self.parent[item])
        return self.parent[item]

    def union(self, x, y):
        xroot = self.find(x)
        yroot = self.find(y)
        if self.rank[xroot]  self.rank[yroot]:
            self.parent[yroot] = xroot
        else:
            self.parent[yroot] = xroot
            self.rank[xroot]  = 1

This comprehensive cheatsheet covers a wide range of Python data structures, from the basic built-in types to more advanced custom implementations. Each section includes creation methods, common operations, and advanced techniques where applicable.
0

版本聲明 本文轉載於:https://dev.to/thelinuxman/comprehensive-python-data-structures-cheat-sheet-2j3p?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • Java是否允許多種返回類型:仔細研究通用方法?
    Java是否允許多種返回類型:仔細研究通用方法?
    在java中的多個返回類型:一個誤解介紹,其中foo是自定義類。該方法聲明似乎擁有兩種返回類型:列表和E。但是,情況確實如此嗎? 通用方法:拆開神秘 [方法僅具有單一的返回類型。相反,它採用機制,如鑽石符號“ ”。 分解方法簽名: :本節定義了一個通用類型參數,E。它表示該方法接受擴展FOO類的...
    程式設計 發佈於2025-02-19
  • 大批
    大批
    [2 數組是對象,因此它們在JS中也具有方法。 切片(開始):在新數組中提取部分數組,而無需突變原始數組。 令ARR = ['a','b','c','d','e']; // USECASE:提取直到索引作...
    程式設計 發佈於2025-02-19
  • 如何為PostgreSQL中的每個唯一標識符有效地檢索最後一行?
    如何為PostgreSQL中的每個唯一標識符有效地檢索最後一行?
    [2最後一行與數據集中的每個不同標識符關聯。考慮以下數據: 1 2014-02-01 kjkj 1 2014-03-11 ajskj 3 2014-02-01 sfdg 3 2014-06-12 fdsa 為了檢索數據集中每個唯一ID的最後一行信息,您可以在操作員上使用Postgres的有效效...
    程式設計 發佈於2025-02-19
  • 如何使用替換指令在GO MOD中解析模塊路徑差異?
    如何使用替換指令在GO MOD中解析模塊路徑差異?
    克服go mod中的模塊路徑差異 github.com/coreos/etcd/integration imports :解析GO.mod:模塊將其路徑聲明為: go.etcd.io/bbolt [&&&&&&&&&&&&&&&&&&&&&&&&&&&& github.com/coreos/b...
    程式設計 發佈於2025-02-19
  • 在沒有密碼提示的情況下,如何在Ubuntu上安裝MySQL?
    在沒有密碼提示的情況下,如何在Ubuntu上安裝MySQL?
    在ubuntu 使用debconf-set-selections 在安裝過程中避免密碼提示mysql root用戶。這需要以下步驟: sudo debconf-set-selections
    程式設計 發佈於2025-02-19
  • 如何檢查對像是否具有Python中的特定屬性?
    如何檢查對像是否具有Python中的特定屬性?
    方法來確定對象屬性存在尋求一種方法來驗證對像中特定屬性的存在。考慮以下示例,其中嘗試訪問不確定屬性會引起錯誤: >>> a = someClass() >>> A.property Trackback(最近的最新電話): 文件“ ”,第1行, AttributeError:SomeClass實...
    程式設計 發佈於2025-02-19
  • 如何以不同的頻率控制Android設備振動?
    如何以不同的頻率控制Android設備振動?
    控制使用頻率變化的Android設備振動是否想為您的Android應用程序添加觸覺元素?了解如何觸發設備的振動器至關重要。您可以做到這一點:生成基本振動以生成簡單的振動,使用振動器對象:這將導致設備在指定的持續時間內振動。 許可要求通過上述技術,您可以創建在您的Android應用程序中自定義振動,以...
    程式設計 發佈於2025-02-19
  • 如何克服PHP的功能重新定義限制?
    如何克服PHP的功能重新定義限制?
    克服PHP的函數重新定義限制在PHP中,多次定義一個相同名稱的函數是一個no-no。嘗試這樣做,如提供的代碼段所示,將導致可怕的“不能重新列出”錯誤。 //錯誤:“ cance redeclare foo()” 但是,PHP工具腰帶中有一個隱藏的寶石:runkit擴展。它使您能夠靈活地重新定...
    程式設計 發佈於2025-02-19
  • 版本5.6.5之前,使用current_timestamp與時間戳列的current_timestamp與時間戳列有什麼限制?
    版本5.6.5之前,使用current_timestamp與時間戳列的current_timestamp與時間戳列有什麼限制?
    在默認值中使用current_timestamp或mysql版本中的current_timestamp或在5.6.5 這種限制源於遺產實現的關注,這些限制需要為Current_timestamp功能提供特定的實現。消息和相關問題 current_timestamp值: 創建表`foo`( `...
    程式設計 發佈於2025-02-19
  • 如何在JavaScript對像中動態設置鍵?
    如何在JavaScript對像中動態設置鍵?
    如何為JavaScript對像變量創建動態鍵,嘗試為JavaScript對象創建動態鍵,使用此Syntax jsObj['key' i] = 'example' 1;將不起作用。正確的方法採用方括號:他們維持一個長度屬性,該屬性反映了數字屬性(索引)和一個數字屬性的數量。標準對像沒有模仿這...
    程式設計 發佈於2025-02-19
  • 如何使用組在MySQL中旋轉數據?
    如何使用組在MySQL中旋轉數據?
    在關係數據庫中使用mysql組使用mysql組來調整查詢結果。在這裡,我們面對一個共同的挑戰:使用組的組將數據從基於行的基於列的基於列的轉換。通過子句以及條件匯總函數,例如總和或情況。讓我們考慮以下查詢: select d.data_timestamp, sum(data_id = 1 tata...
    程式設計 發佈於2025-02-19
  • 可以在純CS中將多個粘性元素彼此堆疊在一起嗎?
    可以在純CS中將多個粘性元素彼此堆疊在一起嗎?
    https://webthemez.com/demo/sticky-multi-header-scroll/index.html </main> <section> display:grid; grid-template-col...
    程式設計 發佈於2025-02-19
  • HTML格式標籤
    HTML格式標籤
    HTML 格式化元素 **HTML Formatting is a process of formatting text for better look and feel. HTML provides us ability to format text without us...
    程式設計 發佈於2025-02-19
  • 如何修復\“常規錯誤:2006 MySQL Server在插入數據時已經消失\”?
    如何修復\“常規錯誤:2006 MySQL Server在插入數據時已經消失\”?
    How to Resolve "General error: 2006 MySQL server has gone away" While Inserting RecordsIntroduction: connect to to to Database connect to t...
    程式設計 發佈於2025-02-19
  • 如何限制動態大小的父元素中元素的滾動範圍?
    如何限制動態大小的父元素中元素的滾動範圍?
    在交互式界面中實現垂直滾動元素的CSS高度限制 考慮一個佈局,其中我們具有與可滾動的映射div一起移動的subollable map div用戶的垂直滾動,同時保持其與固定側邊欄的對齊方式。但是,地圖的滾動無限期擴展,超過了視口的高度,阻止用戶訪問頁面頁腳。 可以限制地圖的滾動,我們可以利用CS...
    程式設計 發佈於2025-02-19

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3