」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > PostgreSQL和MySQL的全面比較

PostgreSQL和MySQL的全面比較

發佈於2024-11-07
瀏覽:987

A comprehensive comparison of PostgreSQL and MySQL

Introduction

Let's take a quick look at PostgreSQL and MySQL. Both of these are important open-source relational database management systems that are widely used across different applications.

Technical Architecture and Design Philosophy

Origins and Development

PostgreSQL originated from the POSTGRES project at Berkeley in 1986, which aimed to advance database management systems through rigorous academic research and strict SQL standards. This background provides PostgreSQL with a solid theoretical foundation focused on data consistency, making it ideal for complex queries and advanced data types. Its design emphasizes long-term stability, scalability, and community-driven innovation.

In contrast, MySQL was created in 1995 by Michael Widenius and David Axmark, prioritizing practicality and ease of use to meet the needs of rapidly developing internet applications. It simplifies database management and enhances performance, quickly becoming the preferred choice for web developers during the internet boom. MySQL's focus has consistently been on performance and ease of deployment.

Database Engines

MySQL's notable feature is its support for multiple database engines, allowing users to choose the best storage method for their needs. Since version 5.5, InnoDB has been the default engine, supporting transactions and row-level locking for high concurrency and data consistency. MyISAM, while offering better read performance, lacks transaction support and is suited for read-heavy scenarios. MySQL also provides engines like Memory and Archive for specific use cases.

PostgreSQL, in contrast, uses a unified core engine, ensuring consistency and interoperability for all features. This design supports complex queries, transaction management, and advanced data types while simplifying maintenance. Although less flexible than MySQL in some cases, PostgreSQL's internal flexibility and scalability are enhanced by features like partitioning and query optimization.

Comparing SQL Syntax and Features

A comparison analysis reveals differences and similarities in areas like array type support, JSON handling, transaction management, temporary tables, window functions, recursive queries, data type richness, default value constraints, and case sensitivity:

SQL Syntax/Feature PostgreSQL MySQL Description
Array Types Supported Not directly supported PostgreSQL allows direct definition of array type fields. MySQL simulates arrays using strings or other indirect methods.
JSON Support Powerful More basic PostgreSQL has advanced JSON support with indexing and optimized queries. MySQL’s JSON support has improved in recent versions but remains simpler.
Transaction Handling Fully ACID Default auto-commit PostgreSQL pulls off full ACID compliance by default, ideal for high-consistency scenarios. MySQL defaults to auto-commit for each statement but can be configured for transaction handling.
Temporary Tables Session/Global Scope Session Only PostgreSQL allows both session-level and global temporary tables, while MySQL supports only session-level ones.
Window Functions Supported Supported since later versions PostgreSQL has long supported window functions; MySQL added full support in more recent versions.
CTE (Common Table Expressions) Supported Supported Both support CTE, but advanced usages or performance may vary.
Recursive Queries Supported Supported since version 8.0 PostgreSQL has supported recursive queries for a while, while MySQL started in version 8.0.
Data Types More varied (like ARRAY, HSTORE, GIS types) Basic types are comprehensive PostgreSQL supports more specialized data types, while MySQL has a good set of basic types but not as diverse as PostgreSQL.
Default Value Constraints Supports any expression Has many limitations PostgreSQL allows defaults to be any expression, whereas MySQL’s defaults are usually constants.
Case Sensitivity Configurable Defaults to case-insensitive PostgreSQL can configure case sensitivity at the database or column level, while MySQL defaults to case-insensitive unless using binary collation.

Note: Over time, both systems are continuously updated, and the support and performance of specific features may change. It’s best to consult the latest official documentation or release notes when choosing a database.

Advanced Feature Comparison: Data Types and Transaction Handling

Feature/Database PostgreSQL MySQL
Advanced Data Types Supports arrays, JSONB, hstore, etc., for complex data structures. Supports JSON (enhanced in newer versions), but doesn't natively support arrays or hstore, needing indirect methods.
Window Functions Early support for window functions, suitable for a variety of complex data analytics scenarios. Added window functions in newer versions, progressively improving functionality but might lag in maturity and community resources.
Transaction Isolation Levels Supports READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, SERIALIZABLE, fully compliant with SQL standards. Also supports these four isolation levels, but defaults to REPEATABLE READ and implements them via different storage engines (like InnoDB).
MVCC Implementation Strong MVCC mechanism maintains multiple versions for each row, allowing for lock-free reads to enhance concurrency. InnoDB uses MVCC via Undo Logs to maintain transaction views, optimizing read and write concurrency with its own locking strategies.
Locking Mechanism Supports row-level locking combined with multi-version concurrency control, reducing lock contention and improving concurrency efficiency. InnoDB supports row-level locking; MyISAM and other engines use table locks. Row-level locking improves concurrency but can be influenced by locking strategies and transaction designs.

Data Types and Functional Features

  • Advanced Data Types: PostgreSQL offers richer options like arrays, JSONB, hstore, making it suitable for complex data handling.
  • Window Functions and Analytical Queries: PostgreSQL has supported these earlier, while MySQL added them in newer releases.
  • Transaction Handling and Concurrency Control: Comparing their isolation levels, MVCC implementation, and locking mechanisms shows key differences.

Performance and Scalability Comparison

Feature/Database PostgreSQL MySQL
Benchmarking and Workload - Excels in complex queries and joins, thanks to rich indexing types and an optimizer.
- Good balance for write-heavy and mixed workloads.
- Performs excellently in read-heavy scenarios, especially simple SELECT queries.
- InnoDB engine optimizes read speed and handles concurrency well.
Scalability Strategy - Supports partitioning for large tables to optimize query performance.
- Parallel querying enhances large data processing capabilities.
- Connection pooling management boosts concurrent processing.
- Achieves scalability via third-party tools (like PgPool-II, Patroni) for high availability and extensibility.
- Sharding is common for horizontally scaling, ideal for large data distribution.
- Offers replication (master-slave), group replication for redundancy and separating reads and writes.
Horizontal Scalability - Native support is limited but can implement complex distributed deployments with third-party tools.
- Citus extension enables real distributed SQL processing.
- Has more mature sharding solutions and clustering technologies, making horizontal scalability more flexible, especially for large internet applications.

Deep Comparison of Performance and Scalability

Feature/Database PostgreSQL MySQL
Benchmarking and Workload - With a powerful query optimizer and various indexing types, excels in complex query handling and analysis.
- Balanced reading and writing, suitable for applications needing high-performance writing and complex analysis.
- Excels in read-heavy contexts, particularly in simple SELECT queries, suited for web browsing and content distribution scenarios.
- Optimizes read performance through read-write separation and caching strategies.
- Specializes in read-heavy operations for simple SELECT queries, perfect for content management systems and e-commerce platforms, ensuring optimized reading performance.
- MySQL supports InnoDB optimizations for read speed and concurrency handling.
Scalability Solutions - Partitions support range, list, hash, and more, boosting large table query efficiency.
- Automatically leverages multi-core CPUs for parallel querying, enhancing data retrieval speed.
- 内置和第三方连接池管理优化资源使用和响应时间。
- Using extensions like Citus for distributed processing.
- Sharding, either manual or automated, disperses storage and processes large datasets to improve read and write performance.
- Replication mechanisms (master-slave, group) enhance data availability and reading scalability.
- InnoDB Cluster provides integrated high availability and scalability solutions that simplify cluster management.

Performance and Scalability

  • Benchmarking and Workload: Analyze both systems' performance under different workloads, mentioning MySQL's edge in read-heavy contexts and PostgreSQL's efficiency in complex queries.
  • Scalability: Discuss their horizontal scalability capabilities: MySQL's sharding strategies versus PostgreSQL's connection pooling, partitioning, and parallel query functionalities.

Security and Compliance Comparison

Feature/Database PostgreSQL MySQL
User Permission Management - Fine-grained permission control with role and privilege inheritance, making it easier to manage complex permission structures.
- Supports row-level security (RLS) for custom access control rules.
- Provides a detailed user and permissions management system, with controls down to the database and table level.
- Doesn't natively support row-level security but can implement it through application logic.
Encryption Features - Supports SSL/TLS encrypted connections to secure data transmission.
- Has field-level encryption plugins to enhance security when data is at rest.
- Transparent Data Encryption (TDE) options can be implemented through third-party extensions.
- Built-in SSL/TLS support protects network communications.
- InnoDB storage engine supports table space encryption to secure data files.
- MySQL Enterprise Edition offers more advanced encryption options.
Compliance Certification - Complies with multiple security standards, including FIPS 140-2 and Common Criteria.
- Supports data protection regulations like GDPR, but specific compliance measures need to be tailored to the environment.
- Holds several international security certifications like PCI DSS and ISO 27001.
- Supports SSL/TLS and TDE, aiding in compliance with regulations like HIPAA and GDPR.
- MySQL Enterprise Edition provides enhanced auditing and security functions to strengthen compliance.

Security and Compliance

  • User Permissions Management: PostgreSQL excels with fine-grained controls and row-level security. MySQL focuses on application-layer security adaptations.
  • Encryption Features: Both support SSL/TLS, but PostgreSQL includes TDE options through extensions and advanced control over field-level encryption.
  • Compliance Certification: Both databases adhere to various security standards, but PostgreSQL has a wider range of recognized certifications, while MySQL's enterprise version enhances compliance capabilities.

Application Scenarios and Selection Recommendations

Database Suitable Scenarios
PostgreSQL - Data analytics and business intelligence: Strong capabilities for complex queries, window functions, and geospatial data processing.
- High compliance industries like finance and healthcare: Robust security and compliance features.
- Complex application development: Supports advanced data types and multi-version concurrency, ideal for transaction-heavy applications.
MySQL - Web applications and startups: Lightweight, easy to deploy, rich community resources, quick development cycles.
- Read-heavy services: Such as content management systems and e-commerce platforms with optimized read performance.
- Cloud-native environments: Deep integration with various cloud providers, suited for quickly scalable internet services.

Decision-Making Framework

Decision Factor Considerations PostgreSQL Tendency MySQL Tendency
Data Scale and Complexity Volume of data, query complexity Large datasets, complex queries, multi-dimensional analysis Small to medium datasets, simple queries
Transaction Processing Needs Complexity and consistency of transactions High-concurrency transactions, strict ACID requirements Simple transaction handling, read/write separation scenarios
Budget and Costs Software licensing, operational costs Open-source and free, but may require more professional support Open-source and low cloud service costs
Team Familiarity and Skills Technical stack match, learning curve Requires strong SQL skills, suited for experienced teams Friendlier for beginners, lower learning curve

Considerations

When selecting a database, there's no one-size-fits-all. Instead, focus on what fits best for your needs. While weighing these factors, consider running a small-scale Proof of Concept (POC) to test database performance under specific workloads before making your final decision. Additionally, both database systems continuously improve and introduce new features, so staying updated with the latest developments is essential for making informed choices.

版本聲明 本文轉載於:https://dev.to/johnjava/a-comprehensive-comparison-of-postgresql-and-mysql-4l8p?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • Go語言如何動態發現導出包類型?
    Go語言如何動態發現導出包類型?
    與反射軟件包中的有限類型的發現能力相反,本文探索了替代方法,探索了在Runruntime。 go import( “ FMT” “去/進口商” ) func main(){ pkg,err:= incorter.default()。導入(“ time”) 如果er...
    程式設計 發佈於2025-07-06
  • 如何使用Python有效地以相反順序讀取大型文件?
    如何使用Python有效地以相反順序讀取大型文件?
    在python 反向行讀取器生成器 == ord('\ n'): 緩衝區=緩衝區[:-1] 剩餘_size- = buf_size lines = buffer.split('\ n'....
    程式設計 發佈於2025-07-06
  • 如何在其容器中為DIV創建平滑的左右CSS動畫?
    如何在其容器中為DIV創建平滑的左右CSS動畫?
    通用CSS動畫,用於左右運動 ,我們將探索創建一個通用的CSS動畫,以向左和右移動DIV,從而到達其容器的邊緣。該動畫可以應用於具有絕對定位的任何div,無論其未知長度如何。 問題:使用左直接導致瞬時消失 更加流暢的解決方案:混合轉換和左 [並實現平穩的,線性的運動,我們介紹了線性的轉換。...
    程式設計 發佈於2025-07-06
  • Python中何時用"try"而非"if"檢測變量值?
    Python中何時用"try"而非"if"檢測變量值?
    使用“ try“ vs.” if”來測試python 在python中的變量值,在某些情況下,您可能需要在處理之前檢查變量是否具有值。在使用“如果”或“ try”構建體之間決定。 “ if” constructs result = function() 如果結果: 對於結果: ...
    程式設計 發佈於2025-07-06
  • 如何在Java的全屏獨家模式下處理用戶輸入?
    如何在Java的全屏獨家模式下處理用戶輸入?
    Handling User Input in Full Screen Exclusive Mode in JavaIntroductionWhen running a Java application in full screen exclusive mode, the usual event ha...
    程式設計 發佈於2025-07-06
  • C++20 Consteval函數中模板參數能否依賴於函數參數?
    C++20 Consteval函數中模板參數能否依賴於函數參數?
    [ consteval函數和模板參數依賴於函數參數在C 17中,模板參數不能依賴一個函數參數,因為編譯器仍然需要對非contexexpr futcoriations contim at contexpr function進行評估。 compile time。 C 20引入恆定函數,必須在編譯時進...
    程式設計 發佈於2025-07-06
  • 如何限制動態大小的父元素中元素的滾動範圍?
    如何限制動態大小的父元素中元素的滾動範圍?
    在交互式接口中實現垂直滾動元素的CSS高度限制問題:考慮一個佈局,其中我們具有與用戶垂直滾動一起移動的可滾動地圖div,同時與固定的固定sidebar保持一致。但是,地圖的滾動無限期擴展,超過了視口的高度,阻止用戶訪問頁面頁腳。 $("#map").css({ margin...
    程式設計 發佈於2025-07-06
  • 版本5.6.5之前,使用current_timestamp與時間戳列的current_timestamp與時間戳列有什麼限制?
    版本5.6.5之前,使用current_timestamp與時間戳列的current_timestamp與時間戳列有什麼限制?
    在時間戳列上使用current_timestamp或MySQL版本中的current_timestamp或在5.6.5 此限制源於遺留實現的關注,這些限制需要對當前的_timestamp功能進行特定的實現。 創建表`foo`( `Productid` int(10)unsigned not ...
    程式設計 發佈於2025-07-06
  • 您可以使用CSS在Chrome和Firefox中染色控制台輸出嗎?
    您可以使用CSS在Chrome和Firefox中染色控制台輸出嗎?
    在javascript console 中顯示顏色是可以使用chrome的控制台顯示彩色文本,例如紅色的redors,for for for for錯誤消息? 回答是的,可以使用CSS將顏色添加到Chrome和Firefox中的控制台顯示的消息(版本31或更高版本)中。要實現這一目標,請使用以下...
    程式設計 發佈於2025-07-06
  • eval()vs. ast.literal_eval():對於用戶輸入,哪個Python函數更安全?
    eval()vs. ast.literal_eval():對於用戶輸入,哪個Python函數更安全?
    稱量()和ast.literal_eval()中的Python Security 在使用用戶輸入時,必須優先確保安全性。強大的Python功能Eval()通常是作為潛在解決方案而出現的,但擔心其潛在風險。 This article delves into the differences betwee...
    程式設計 發佈於2025-07-06
  • 在C#中如何高效重複字符串字符用於縮進?
    在C#中如何高效重複字符串字符用於縮進?
    在基於項目的深度下固定字符串時,重複一個字符串以進行凹痕,很方便有效地有一種有效的方法來返回字符串重複指定的次數的字符串。使用指定的次數。 constructor 這將返回字符串“ -----”。 字符串凹痕= new String(' - ',depth); console.W...
    程式設計 發佈於2025-07-06
  • Go web應用何時關閉數據庫連接?
    Go web應用何時關閉數據庫連接?
    在GO Web Applications中管理數據庫連接很少,考慮以下簡化的web應用程序代碼:出現的問題:何時應在DB連接上調用Close()方法? ,該特定方案將自動關閉程序時,該程序將在EXITS EXITS EXITS出現時自動關閉。但是,其他考慮因素可能保證手動處理。 選項1:隱式關閉終...
    程式設計 發佈於2025-07-06
  • Spark DataFrame添加常量列的妙招
    Spark DataFrame添加常量列的妙招
    在Spark Dataframe ,將常數列添加到Spark DataFrame,該列具有適用於所有行的任意值的Spark DataFrame,可以通過多種方式實現。使用文字值(SPARK 1.3)在嘗試提供直接值時,用於此問題時,旨在為此目的的column方法可能會導致錯誤。 df.withco...
    程式設計 發佈於2025-07-06
  • 為什麼不````''{margin:0; }`始終刪除CSS中的最高邊距?
    為什麼不````''{margin:0; }`始終刪除CSS中的最高邊距?
    在CSS 問題:不正確的代碼: 全球範圍將所有餘量重置為零,如提供的代碼所建議的,可能會導致意外的副作用。解決特定的保證金問題是更建議的。 例如,在提供的示例中,將以下代碼添加到CSS中,將解決餘量問題: body H1 { 保證金頂:-40px; } 此方法更精確,避免了由全局保證金重置...
    程式設計 發佈於2025-07-06
  • 我可以將加密從McRypt遷移到OpenSSL,並使用OpenSSL遷移MCRYPT加密數據?
    我可以將加密從McRypt遷移到OpenSSL,並使用OpenSSL遷移MCRYPT加密數據?
    將我的加密庫從mcrypt升級到openssl 問題:是否可以將我的加密庫從McRypt升級到OpenSSL?如果是這樣,如何? 答案:是的,可以將您的Encryption庫從McRypt升級到OpenSSL。 可以使用openssl。 附加說明: [openssl_decrypt()函數要求...
    程式設計 發佈於2025-07-06

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3