」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > PostgreSQL和MySQL的全面比較

PostgreSQL和MySQL的全面比較

發佈於2024-11-07
瀏覽:772

A comprehensive comparison of PostgreSQL and MySQL

Introduction

Let's take a quick look at PostgreSQL and MySQL. Both of these are important open-source relational database management systems that are widely used across different applications.

Technical Architecture and Design Philosophy

Origins and Development

PostgreSQL originated from the POSTGRES project at Berkeley in 1986, which aimed to advance database management systems through rigorous academic research and strict SQL standards. This background provides PostgreSQL with a solid theoretical foundation focused on data consistency, making it ideal for complex queries and advanced data types. Its design emphasizes long-term stability, scalability, and community-driven innovation.

In contrast, MySQL was created in 1995 by Michael Widenius and David Axmark, prioritizing practicality and ease of use to meet the needs of rapidly developing internet applications. It simplifies database management and enhances performance, quickly becoming the preferred choice for web developers during the internet boom. MySQL's focus has consistently been on performance and ease of deployment.

Database Engines

MySQL's notable feature is its support for multiple database engines, allowing users to choose the best storage method for their needs. Since version 5.5, InnoDB has been the default engine, supporting transactions and row-level locking for high concurrency and data consistency. MyISAM, while offering better read performance, lacks transaction support and is suited for read-heavy scenarios. MySQL also provides engines like Memory and Archive for specific use cases.

PostgreSQL, in contrast, uses a unified core engine, ensuring consistency and interoperability for all features. This design supports complex queries, transaction management, and advanced data types while simplifying maintenance. Although less flexible than MySQL in some cases, PostgreSQL's internal flexibility and scalability are enhanced by features like partitioning and query optimization.

Comparing SQL Syntax and Features

A comparison analysis reveals differences and similarities in areas like array type support, JSON handling, transaction management, temporary tables, window functions, recursive queries, data type richness, default value constraints, and case sensitivity:

SQL Syntax/Feature PostgreSQL MySQL Description
Array Types Supported Not directly supported PostgreSQL allows direct definition of array type fields. MySQL simulates arrays using strings or other indirect methods.
JSON Support Powerful More basic PostgreSQL has advanced JSON support with indexing and optimized queries. MySQL’s JSON support has improved in recent versions but remains simpler.
Transaction Handling Fully ACID Default auto-commit PostgreSQL pulls off full ACID compliance by default, ideal for high-consistency scenarios. MySQL defaults to auto-commit for each statement but can be configured for transaction handling.
Temporary Tables Session/Global Scope Session Only PostgreSQL allows both session-level and global temporary tables, while MySQL supports only session-level ones.
Window Functions Supported Supported since later versions PostgreSQL has long supported window functions; MySQL added full support in more recent versions.
CTE (Common Table Expressions) Supported Supported Both support CTE, but advanced usages or performance may vary.
Recursive Queries Supported Supported since version 8.0 PostgreSQL has supported recursive queries for a while, while MySQL started in version 8.0.
Data Types More varied (like ARRAY, HSTORE, GIS types) Basic types are comprehensive PostgreSQL supports more specialized data types, while MySQL has a good set of basic types but not as diverse as PostgreSQL.
Default Value Constraints Supports any expression Has many limitations PostgreSQL allows defaults to be any expression, whereas MySQL’s defaults are usually constants.
Case Sensitivity Configurable Defaults to case-insensitive PostgreSQL can configure case sensitivity at the database or column level, while MySQL defaults to case-insensitive unless using binary collation.

Note: Over time, both systems are continuously updated, and the support and performance of specific features may change. It’s best to consult the latest official documentation or release notes when choosing a database.

Advanced Feature Comparison: Data Types and Transaction Handling

Feature/Database PostgreSQL MySQL
Advanced Data Types Supports arrays, JSONB, hstore, etc., for complex data structures. Supports JSON (enhanced in newer versions), but doesn't natively support arrays or hstore, needing indirect methods.
Window Functions Early support for window functions, suitable for a variety of complex data analytics scenarios. Added window functions in newer versions, progressively improving functionality but might lag in maturity and community resources.
Transaction Isolation Levels Supports READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, SERIALIZABLE, fully compliant with SQL standards. Also supports these four isolation levels, but defaults to REPEATABLE READ and implements them via different storage engines (like InnoDB).
MVCC Implementation Strong MVCC mechanism maintains multiple versions for each row, allowing for lock-free reads to enhance concurrency. InnoDB uses MVCC via Undo Logs to maintain transaction views, optimizing read and write concurrency with its own locking strategies.
Locking Mechanism Supports row-level locking combined with multi-version concurrency control, reducing lock contention and improving concurrency efficiency. InnoDB supports row-level locking; MyISAM and other engines use table locks. Row-level locking improves concurrency but can be influenced by locking strategies and transaction designs.

Data Types and Functional Features

  • Advanced Data Types: PostgreSQL offers richer options like arrays, JSONB, hstore, making it suitable for complex data handling.
  • Window Functions and Analytical Queries: PostgreSQL has supported these earlier, while MySQL added them in newer releases.
  • Transaction Handling and Concurrency Control: Comparing their isolation levels, MVCC implementation, and locking mechanisms shows key differences.

Performance and Scalability Comparison

Feature/Database PostgreSQL MySQL
Benchmarking and Workload - Excels in complex queries and joins, thanks to rich indexing types and an optimizer.
- Good balance for write-heavy and mixed workloads.
- Performs excellently in read-heavy scenarios, especially simple SELECT queries.
- InnoDB engine optimizes read speed and handles concurrency well.
Scalability Strategy - Supports partitioning for large tables to optimize query performance.
- Parallel querying enhances large data processing capabilities.
- Connection pooling management boosts concurrent processing.
- Achieves scalability via third-party tools (like PgPool-II, Patroni) for high availability and extensibility.
- Sharding is common for horizontally scaling, ideal for large data distribution.
- Offers replication (master-slave), group replication for redundancy and separating reads and writes.
Horizontal Scalability - Native support is limited but can implement complex distributed deployments with third-party tools.
- Citus extension enables real distributed SQL processing.
- Has more mature sharding solutions and clustering technologies, making horizontal scalability more flexible, especially for large internet applications.

Deep Comparison of Performance and Scalability

Feature/Database PostgreSQL MySQL
Benchmarking and Workload - With a powerful query optimizer and various indexing types, excels in complex query handling and analysis.
- Balanced reading and writing, suitable for applications needing high-performance writing and complex analysis.
- Excels in read-heavy contexts, particularly in simple SELECT queries, suited for web browsing and content distribution scenarios.
- Optimizes read performance through read-write separation and caching strategies.
- Specializes in read-heavy operations for simple SELECT queries, perfect for content management systems and e-commerce platforms, ensuring optimized reading performance.
- MySQL supports InnoDB optimizations for read speed and concurrency handling.
Scalability Solutions - Partitions support range, list, hash, and more, boosting large table query efficiency.
- Automatically leverages multi-core CPUs for parallel querying, enhancing data retrieval speed.
- 内置和第三方连接池管理优化资源使用和响应时间。
- Using extensions like Citus for distributed processing.
- Sharding, either manual or automated, disperses storage and processes large datasets to improve read and write performance.
- Replication mechanisms (master-slave, group) enhance data availability and reading scalability.
- InnoDB Cluster provides integrated high availability and scalability solutions that simplify cluster management.

Performance and Scalability

  • Benchmarking and Workload: Analyze both systems' performance under different workloads, mentioning MySQL's edge in read-heavy contexts and PostgreSQL's efficiency in complex queries.
  • Scalability: Discuss their horizontal scalability capabilities: MySQL's sharding strategies versus PostgreSQL's connection pooling, partitioning, and parallel query functionalities.

Security and Compliance Comparison

Feature/Database PostgreSQL MySQL
User Permission Management - Fine-grained permission control with role and privilege inheritance, making it easier to manage complex permission structures.
- Supports row-level security (RLS) for custom access control rules.
- Provides a detailed user and permissions management system, with controls down to the database and table level.
- Doesn't natively support row-level security but can implement it through application logic.
Encryption Features - Supports SSL/TLS encrypted connections to secure data transmission.
- Has field-level encryption plugins to enhance security when data is at rest.
- Transparent Data Encryption (TDE) options can be implemented through third-party extensions.
- Built-in SSL/TLS support protects network communications.
- InnoDB storage engine supports table space encryption to secure data files.
- MySQL Enterprise Edition offers more advanced encryption options.
Compliance Certification - Complies with multiple security standards, including FIPS 140-2 and Common Criteria.
- Supports data protection regulations like GDPR, but specific compliance measures need to be tailored to the environment.
- Holds several international security certifications like PCI DSS and ISO 27001.
- Supports SSL/TLS and TDE, aiding in compliance with regulations like HIPAA and GDPR.
- MySQL Enterprise Edition provides enhanced auditing and security functions to strengthen compliance.

Security and Compliance

  • User Permissions Management: PostgreSQL excels with fine-grained controls and row-level security. MySQL focuses on application-layer security adaptations.
  • Encryption Features: Both support SSL/TLS, but PostgreSQL includes TDE options through extensions and advanced control over field-level encryption.
  • Compliance Certification: Both databases adhere to various security standards, but PostgreSQL has a wider range of recognized certifications, while MySQL's enterprise version enhances compliance capabilities.

Application Scenarios and Selection Recommendations

Database Suitable Scenarios
PostgreSQL - Data analytics and business intelligence: Strong capabilities for complex queries, window functions, and geospatial data processing.
- High compliance industries like finance and healthcare: Robust security and compliance features.
- Complex application development: Supports advanced data types and multi-version concurrency, ideal for transaction-heavy applications.
MySQL - Web applications and startups: Lightweight, easy to deploy, rich community resources, quick development cycles.
- Read-heavy services: Such as content management systems and e-commerce platforms with optimized read performance.
- Cloud-native environments: Deep integration with various cloud providers, suited for quickly scalable internet services.

Decision-Making Framework

Decision Factor Considerations PostgreSQL Tendency MySQL Tendency
Data Scale and Complexity Volume of data, query complexity Large datasets, complex queries, multi-dimensional analysis Small to medium datasets, simple queries
Transaction Processing Needs Complexity and consistency of transactions High-concurrency transactions, strict ACID requirements Simple transaction handling, read/write separation scenarios
Budget and Costs Software licensing, operational costs Open-source and free, but may require more professional support Open-source and low cloud service costs
Team Familiarity and Skills Technical stack match, learning curve Requires strong SQL skills, suited for experienced teams Friendlier for beginners, lower learning curve

Considerations

When selecting a database, there's no one-size-fits-all. Instead, focus on what fits best for your needs. While weighing these factors, consider running a small-scale Proof of Concept (POC) to test database performance under specific workloads before making your final decision. Additionally, both database systems continuously improve and introduce new features, so staying updated with the latest developments is essential for making informed choices.

版本聲明 本文轉載於:https://dev.to/johnjava/a-comprehensive-comparison-of-postgresql-and-mysql-4l8p?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • 為什麼使用Firefox後退按鈕時JavaScript執行停止?
    為什麼使用Firefox後退按鈕時JavaScript執行停止?
    導航歷史記錄問題:JavaScript使用Firefox Back Back 此行為是由瀏覽器緩存JavaScript資源引起的。要解決此問題並確保在後續頁面訪問中執行腳本,Firefox用戶應設置一個空功能。 警報'); }; alert('inline Alert')...
    程式設計 發佈於2025-03-11
  • 為什麼我的CSS背景圖像出現?
    為什麼我的CSS背景圖像出現?
    故障排除:CSS背景圖像未出現 ,您的背景圖像儘管遵循教程說明,但您的背景圖像仍未加載。圖像和样式表位於相同的目錄中,但背景仍然是空白的白色帆布。 而不是不棄用的,您已經使用了CSS樣式: bockent {背景:封閉圖像文件名:背景圖:url(nickcage.jpg); 如果您的html,cs...
    程式設計 發佈於2025-03-11
  • 為什麼PYTZ最初顯示出意外的時區偏移?
    為什麼PYTZ最初顯示出意外的時區偏移?
    與pytz 最初從pytz獲得特定的偏移。例如,亞洲/hong_kong最初顯示一個七個小時37分鐘的偏移: 差異源利用本地化將時區分配給日期,使用了適當的時區名稱和偏移量。但是,直接使用DateTime構造器分配時區不允許進行正確的調整。 example pytz.timezone(&#...
    程式設計 發佈於2025-03-11
  • 對象擬合:IE和Edge中的封面失敗,如何修復?
    對象擬合:IE和Edge中的封面失敗,如何修復?
    To resolve this issue, we employ a clever CSS solution that solves the problem:position: absolute;top: 50%;left: 50%;transform: translate(-50%, -50%)...
    程式設計 發佈於2025-03-11
  • 為什麼不使用CSS`content'屬性顯示圖像?
    為什麼不使用CSS`content'屬性顯示圖像?
    在Firefox extemers屬性為某些圖像很大,&& && && &&華倍華倍[華氏華倍華氏度]很少見,卻是某些瀏覽屬性很少,尤其是特定於Firefox的某些瀏覽器未能在使用內容屬性引用時未能顯示圖像的情況。這可以在提供的CSS類中看到:。 googlepic { 內容:url(&...
    程式設計 發佈於2025-03-11
  • 如何為PostgreSQL中的每個唯一標識符有效地檢索最後一行?
    如何為PostgreSQL中的每個唯一標識符有效地檢索最後一行?
    postgresql:為每個唯一標識符在postgresql中提取最後一行,您可能需要遇到與數據集合中每個不同標識的信息相關的信息。考慮以下數據:[ 1 2014-02-01 kjkj 在數據集中的每個唯一ID中檢索最後一行的信息,您可以在操作員上使用Postgres的有效效率: id dat...
    程式設計 發佈於2025-03-11
  • 如何使用組在MySQL中旋轉數據?
    如何使用組在MySQL中旋轉數據?
    在關係數據庫中使用mySQL組使用mySQL組進行查詢結果,在關係數據庫中使用MySQL組,轉移數據的數據是指重新排列的行和列的重排以增強數據可視化。在這裡,我們面對一個共同的挑戰:使用組的組將數據從基於行的基於列的轉換為基於列。 Let's consider the following ...
    程式設計 發佈於2025-03-11
  • 在Java中使用for-to-loop和迭代器進行收集遍歷之間是否存在性能差異?
    在Java中使用for-to-loop和迭代器進行收集遍歷之間是否存在性能差異?
    For Each Loop vs. Iterator: Efficiency in Collection TraversalIntroductionWhen traversing a collection in Java, the choice arises between using a for-...
    程式設計 發佈於2025-03-11
  • 如何在JavaScript對像中動態設置鍵?
    如何在JavaScript對像中動態設置鍵?
    在嘗試為JavaScript對象創建動態鍵時,如何使用此Syntax jsObj['key' i] = 'example' 1;不工作。正確的方法採用方括號: jsobj ['key''i] ='example'1; 在JavaScript中,數組是一...
    程式設計 發佈於2025-03-11
  • 如何從PHP中的數組中提取隨機元素?
    如何從PHP中的數組中提取隨機元素?
    從陣列中的隨機選擇,可以輕鬆從數組中獲取隨機項目。考慮以下數組:; 從此數組中檢索一個隨機項目,利用array_rand( array_rand()函數從數組返回一個隨機鍵。通過將$項目數組索引使用此鍵,我們可以從數組中訪問一個隨機元素。這種方法為選擇隨機項目提供了一種直接且可靠的方法。
    程式設計 發佈於2025-03-11
  • 為什麼我會收到MySQL錯誤#1089:錯誤的前綴密鑰?
    為什麼我會收到MySQL錯誤#1089:錯誤的前綴密鑰?
    mySQL錯誤#1089:錯誤的前綴鍵錯誤descript [#1089-不正確的前綴鍵在嘗試在表中創建一個prefix鍵時會出現。前綴鍵旨在索引字符串列的特定前綴長度長度,可以更快地搜索這些前綴。 了解prefix keys `這將在整個Movie_ID列上創建標準主鍵。主密鑰對於唯一識...
    程式設計 發佈於2025-03-11
  • 可以在純CS中將多個粘性元素彼此堆疊在一起嗎?
    可以在純CS中將多個粘性元素彼此堆疊在一起嗎?
    [2这里: https://webthemez.com/demo/sticky-multi-header-scroll/index.html </main> <section> { display:grid; grid-template-...
    程式設計 發佈於2025-03-11
  • 如何使用替換指令在GO MOD中解析模塊路徑差異?
    如何使用替換指令在GO MOD中解析模塊路徑差異?
    在使用GO MOD時,在GO MOD 中克服模塊路徑差異時,可能會遇到衝突,其中3個Party Package將另一個PAXPANCE帶有導入式套件之間的另一個軟件包,並在導入式套件之間導入另一個軟件包。如迴聲消息所證明的那樣: go.etcd.io/bbolt [&&&&&&&&&&&&&&&&...
    程式設計 發佈於2025-03-11
  • 如何使用不同數量列的聯合數據庫表?
    如何使用不同數量列的聯合數據庫表?
    合併列數不同的表 當嘗試合併列數不同的數據庫表時,可能會遇到挑戰。一種直接的方法是在列數較少的表中,為缺失的列追加空值。 例如,考慮兩個表,表 A 和表 B,其中表 A 的列數多於表 B。為了合併這些表,同時處理表 B 中缺失的列,請按照以下步驟操作: 確定表 B 中缺失的列,並將它們添加到表的...
    程式設計 發佈於2025-03-11

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3