」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > OpenCV 影像壓縮完整指南

OpenCV 影像壓縮完整指南

發佈於2024-11-08
瀏覽:471

图像压缩是计算机视觉中的一项关键技术,它使我们能够更有效地存储和传输图像,同时保持视觉质量。理想情况下,我们希望拥有最佳质量的小文件。然而,我们必须做出权衡并决定哪个更重要。

本教程将教授使用 OpenCV 进行图像压缩,涵盖理论和实际应用。最后,您将了解如何为计算机视觉项目(或您可能拥有的任何其他项目)成功压缩照片。

什么是图像压缩?

图像压缩正在减小图像的文件大小,同时保持可接受的视觉质量水平。压缩主要有两种类型:

  1. 无损压缩:保留所有原始数据,允许精确的图像重建。
  2. 有损压缩: 丢弃一些数据以获得更小的文件大小,可能会降低图像质量。

为什么要压缩图像?

如果正如我们经常听到的那样“磁盘空间很便宜”,那么为什么还要压缩图像呢?在小范围内,图像压缩并不重要,但在大范围内,它至关重要。

例如,如果您的硬盘上有一些图像,您可以压缩它们并保存几兆字节的数据。当硬盘驱动器以 TB 为单位时,这不会产生太大影响。但如果您的硬盘上有 100,000 张图像怎么办?一些基本的压缩可以节省实时时间和金钱。从性能的角度来看,是一样的。如果您的网站包含大量图像,并且每天有 10,000 人访问您的网站,那么压缩就很重要。

这就是我们这样做的原因:

  • 减少存储要求:在同一空间中存储更多图像
  • 更快的传输:非常适合Web应用程序和带宽受限的场景
  • 提高处理速度:较小的图像加载和处理速度更快

图像压缩背后的理论

图像压缩技术利用两种类型的冗余:

  1. 空间冗余:相邻像素之间的相关性
  2. 颜色冗余:相邻区域颜色值的相似度

空间冗余利用了相邻像素在大多数自然图像中往往具有相似值的事实。这会产生平滑的过渡。许多照片“看起来很真实”,因为从一个区域到另一个区域有一种自然的流动。当相邻像素具有截然不同的值时,您会得到“嘈杂”的图像。像素发生了变化,通过将像素分组为单一颜色,使这些过渡变得不那么“平滑”,从而使图像更小。

The Complete Guide to Image Compression with OpenCV

另一方面,

颜色冗余重点关注图像中的相邻区域如何经常共享相似的颜色。想象一下蓝天或绿地——图像的大部分可能具有非常相似的颜色值。它们也可以组合在一起并制成单一颜色以节省空间。

The Complete Guide to Image Compression with OpenCV

OpenCV 提供了用于处理这些想法的可靠工具。例如,OpenCV 的 cv2.inpaint() 函数利用空间冗余,使用附近像素的信息填充图片中缺失或损坏的区域。 OpenCV 允许开发人员使用 cv2.cvtColor() 在多个关于颜色冗余的颜色空间之间转换图像。这作为许多压缩技术中的预处理步骤可能会有所帮助,因为某些颜色空间在编码特定类型的图像时比其他颜色空间更有效。

我们现在将测试这个理论的一些内容。我们来玩一下吧。

动手实践图像压缩

让我们探索如何使用 OpenCV 的 Python 绑定来压缩图像。写出此代码或复制它:

您也可以在这里获取源代码

import cv2
import numpy as np

def compress_image(image_path, quality=90):
    # Read the image
 img = cv2.imread(image_path)
    
    # Encode the image with JPEG compression
 encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
 _, encoded_img = cv2.imencode('.jpg', img, encode_param)
    
    # Decode the compressed image
 decoded_img = cv2.imdecode(encoded_img, cv2.IMREAD_COLOR)
    
    return decoded_img

# Example usage
original_img = cv2.imread('original_image.jpg')
compressed_img = compress_image('original_image.jpg', quality=50)

# Display results
cv2.imshow('Original', original_img)
cv2.imshow('Compressed', compressed_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# Calculate compression ratio
original_size = original_img.nbytes
compressed_size = compressed_img.nbytes
compression_ratio = original_size / compressed_size
print(f"Compression ratio: {compression_ratio:.2f}")

此示例包含一个 compress_image 函数,该函数采用两个参数:

  • 图片路径(图片所在的位置)
  • 质量(所需图像的质量)

然后,我们将原始图像加载到original_img中。然后,我们将同一图像压缩 50% 并将其加载到新实例压缩图像中。

然后我们将显示原始图像和压缩图像,以便您可以并排查看它们。

然后我们计算并显示压缩比。

此示例演示如何在 OpenCV 中使用 JPEG 压缩来压缩图像。质量参数控制文件大小和图像质量的权衡。

让我们运行它:

The Complete Guide to Image Compression with OpenCV

最初查看图像时,您发现几乎没有什么区别。但是,放大后您会看到质量的差异:

The Complete Guide to Image Compression with OpenCV

关闭窗口并查看文件后,我们可以看到文件的大小急剧减小:

The Complete Guide to Image Compression with OpenCV

另外,如果我们进一步降低,我们可以将质量更改为10%

compressed_img = compress_image('sampleimage.jpg', quality=10)

结果更加剧烈:

The Complete Guide to Image Compression with OpenCV

文件大小结果也更加剧烈:

The Complete Guide to Image Compression with OpenCV

您可以非常轻松地调整这些参数,并在质量和文件大小之间实现所需的平衡。

评估压缩质量

为了评估压缩的影响,我们可以使用以下指标:

  1. 均方误差 (MSE)

均方误差 (MSE) 衡量两幅图像之间的差异程度。当您压缩图像时,MSE 可以帮助您确定压缩图像与原始图像相比发生了多少变化。

它通过对两个图像中相应像素的颜色之间的差异进行采样、对这些差异进行平方并取平均值来实现此目的。结果是一个数字:较低的 MSE 意味着压缩图像更接近原始图像。相比之下,更高的 MSE 意味着质量损失更明显。

这里有一些Python代码来衡量:

def calculate_mse(img1, img2):
    return np.mean((img1 - img2) ** 2)

mse = calculate_mse(original_img, compressed_img)
print(f"Mean Squared Error: {mse:.2f}")

这是我们的演示图像压缩的样子:

The Complete Guide to Image Compression with OpenCV

  1. 峰值信噪比 (PSNR)

峰值信噪比 (PSNR) 是一种衡量图像质量在压缩后下降程度的指标。这通常是肉眼可见的,但它指定了一个设定值。它将原始图像与压缩图像进行比较,并将差异表示为比率。

PSNR 值越高,意味着压缩后的图像质量更接近原始图像,表明质量损失更少。 PSNR 越低意味着退化越明显。 PSNR 通常与 MSE 一起使用,PSNR 提供了一个更易于解释的量表,其中越高越好。

下面是一些用于测量的 Python 代码:

def calculate_psnr(img1, img2):
 mse = calculate_mse(img1, img2)
    if mse == 0:
        return float('inf')
 max_pixel = 255.0
    return 20 * np.log10(max_pixel / np.sqrt(mse))

psnr = calculate_psnr(original_img, compressed_img)
print(f"PSNR: {psnr:.2f} dB")

这是我们的演示图像压缩的样子:

The Complete Guide to Image Compression with OpenCV

压缩后“观察”图像以确定质量是否良好;然而,在大规模上,让脚本执行此操作是设置标准并确保图像遵循这些标准的更简单的方法。

让我们看看其他一些技巧:

先进的压缩技术

对于更高级的压缩,OpenCV 支持各种算法:

  1. PNG 压缩:

您可以将图像转换为PNG格式,它有很多优点。使用以下代码行,您可以根据需要将压缩设置为 0 到 9。 0 表示不进行任何压缩,9 表示最大。请记住,PNG 是一种“无损”格式,因此即使在最大压缩下,图像也应保持完整。最大的权衡是文件大小和压缩时间。

以下是使用 OpenCV 进行 PNG 压缩的代码:

cv2.imwrite('compressed.png', img, [cv2.IMWRITE_PNG_COMPRESSION, 9])

这是我们的结果:

The Complete Guide to Image Compression with OpenCV

注意:有时您可能会注意到 PNG 文件实际上尺寸更大,如本例所示。这取决于图像的内容。

  1. WebP 压缩:

您还可以将图像转换为 .webp 格式。这是一种越来越流行的新型压缩方法。多年来我一直在博客上的图像上使用这种压缩。

在下面的代码中,我们可以将图像写入 webp 文件并将压缩级别设置为 0 到 100。这与 PNG 的比例相反,因为 0,因为我们设置的是 quality 而不是压缩。这个微小的区别很重要,因为设置为 0 是可能的最低质量,文件大小较小且损失很大。 100是最高质量,这意味着大文件具有最好的图像质量。

下面是实现这一点的 Python 代码:

cv2.imwrite('compressed.webp', img, [cv2.IMWRITE_WEBP_QUALITY, 80])

这是我们的结果:

The Complete Guide to Image Compression with OpenCV

这两种技术非常适合压缩大量数据。您可以编写脚本来自动压缩数千或数十万张图像。

结论

图像压缩非常棒。它在很多方面对于计算机视觉任务都是至关重要的,特别是在节省空间或提高处理速度时。当您想要减少硬盘空间或节省带宽时,计算机视觉之外还有许多用例。图像压缩有很大帮助。

通过理解其背后的理论并应用它,您可以在您的项目中做一些强大的事情。

请记住,有效压缩的关键是找到减小文件大小和保持应用程序可接受的视觉质量之间的最佳平衡点。

感谢您的阅读,如果您有任何意见或问题,请随时与我们联系!

版本聲明 本文轉載於:https://dev.to/jeremycmorgan/the-complete-guide-to-image-compression-with-opencv-2bld?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • 在 Go 中使用 WebSocket 進行即時通信
    在 Go 中使用 WebSocket 進行即時通信
    构建需要实时更新的应用程序(例如聊天应用程序、实时通知或协作工具)需要一种比传统 HTTP 更快、更具交互性的通信方法。这就是 WebSockets 发挥作用的地方!今天,我们将探讨如何在 Go 中使用 WebSocket,以便您可以向应用程序添加实时功能。 在这篇文章中,我们将介绍: WebSoc...
    程式設計 發佈於2024-12-29
  • HTML 格式標籤
    HTML 格式標籤
    HTML 格式化元素 **HTML Formatting is a process of formatting text for better look and feel. HTML provides us ability to format text without us...
    程式設計 發佈於2024-12-29
  • 如何在 PHP 中組合兩個關聯數組,同時保留唯一 ID 並處理重複名稱?
    如何在 PHP 中組合兩個關聯數組,同時保留唯一 ID 並處理重複名稱?
    在 PHP 中組合關聯數組在 PHP 中,將兩個關聯數組組合成一個數組是常見任務。考慮以下請求:問題描述:提供的代碼定義了兩個關聯數組,$array1 和 $array2。目標是建立一個新陣列 $array3,它合併兩個陣列中的所有鍵值對。 此外,提供的陣列具有唯一的 ID,而名稱可能重疊。要求是建...
    程式設計 發佈於2024-12-29
  • 大批
    大批
    方法是可以在物件上呼叫的 fns 數組是對象,因此它們在 JS 中也有方法。 slice(begin):將陣列的一部分提取到新數組中,而不改變原始數組。 let arr = ['a','b','c','d','e']; // Usecase: Extract till index ...
    程式設計 發佈於2024-12-29
  • 插入資料時如何修復「常規錯誤:2006 MySQL 伺服器已消失」?
    插入資料時如何修復「常規錯誤:2006 MySQL 伺服器已消失」?
    插入記錄時如何解決「一般錯誤:2006 MySQL 伺服器已消失」介紹:將資料插入MySQL 資料庫有時會導致錯誤「一般錯誤:2006 MySQL 伺服器已消失」。當與伺服器的連線遺失時會出現此錯誤,通常是由於 MySQL 配置中的兩個變數之一所致。 解決方案:解決此錯誤的關鍵是調整wait_tim...
    程式設計 發佈於2024-12-29
  • 儘管程式碼有效,為什麼 POST 請求無法擷取 PHP 中的輸入?
    儘管程式碼有效,為什麼 POST 請求無法擷取 PHP 中的輸入?
    解決PHP 中的POST 請求故障在提供的程式碼片段中:action=''而非:action="<?php echo $_SERVER['PHP_SELF'];?>";?>"檢查$_POST陣列:表單提交後使用 var_dump 檢查 $_POST 陣列的內...
    程式設計 發佈於2024-12-29
  • Bootstrap 4 Beta 中的列偏移發生了什麼事?
    Bootstrap 4 Beta 中的列偏移發生了什麼事?
    Bootstrap 4 Beta:列偏移的刪除和恢復Bootstrap 4 在其Beta 1 版本中引入了重大更改柱子偏移了。然而,隨著 Beta 2 的後續發布,這些變化已經逆轉。 從 offset-md-* 到 ml-auto在 Bootstrap 4 Beta 1 中, offset-md-*...
    程式設計 發佈於2024-12-29
  • 如何在 React 中有條件地應用類別屬性?
    如何在 React 中有條件地應用類別屬性?
    在React 中有條件地應用類別屬性在React 中,根據從父組件傳遞的props 來顯示或隱藏元素是很常見的。為此,您可以有條件地應用 CSS 類別。然而,當使用語法 {this.props.condition ? 'show' : 'hidden'} 直接在字串中...
    程式設計 發佈於2024-12-28
  • 如何在Java中執行系統命令並與其他應用程式互動?
    如何在Java中執行系統命令並與其他應用程式互動?
    Java 中運行進程在 Java 中,啟動進程的能力是執行系統命令和與其他應用程式互動的關鍵功能。為了啟動一個流程,Java提供了一個相當於.Net System.Diagnostics.Process.Start方法。 解決方案:取得本地路徑對於執行至關重要Java 中的程序。幸運的是,Java ...
    程式設計 發佈於2024-12-28
  • 如何在 C++ 中建立多行字串文字?
    如何在 C++ 中建立多行字串文字?
    C 中的多行字串文字 在 C 中,定義多行字串文字並不像 Perl 等其他語言那麼簡單。但是,您可以使用一些技術來實現此目的:連接字串文字一種方法是利用 C 中相鄰字串文字由編譯器連接的事實。將字串分成多行,您可以建立單一多行字串:const char *text = "This te...
    程式設計 發佈於2024-12-28
  • 如何準確地透視具有不同記錄的資料以避免遺失資訊?
    如何準確地透視具有不同記錄的資料以避免遺失資訊?
    有效地透視不同記錄透視查詢在將資料轉換為表格格式、實現輕鬆資料分析方面發揮著至關重要的作用。但是,在處理不同記錄時,資料透視查詢的預設行為可能會出現問題。 問題:忽略不同值考慮下表:------------------------------------------------------ | Id...
    程式設計 發佈於2024-12-27
  • 為什麼 C 和 C++ 忽略函式簽章中的陣列長度?
    為什麼 C 和 C++ 忽略函式簽章中的陣列長度?
    將陣列傳遞給C 和C 中的函數問題:為什麼C和C 編譯器允許在函數簽章中宣告數組長度,例如int dis(char a[1])(當它們不允許時)強制執行? 答案:C 和C 中用於將數組傳遞給函數的語法是歷史上的奇怪現象,它允許將指針傳遞給第一個元素詳細說明:在C 和C 中,數組不是透過函數的引用傳遞...
    程式設計 發佈於2024-12-26
  • 如何刪除 MySQL 中的重音符號以改進自動完成搜尋?
    如何刪除 MySQL 中的重音符號以改進自動完成搜尋?
    在MySQL 中刪除重音符號以實現高效的自動完成搜尋管理大型地名資料庫時,確保準確和高效至關重要資料檢索。使用自動完成功能時,地名中的重音可能會帶來挑戰。為了解決這個問題,一個自然的問題出現了:如何在 MySQL 中刪除重音符號以改善自動完成功能? 解決方案在於為資料庫列使用適當的排序規則設定。透過...
    程式設計 發佈於2024-12-26
  • 如何在MySQL中實作複合外鍵?
    如何在MySQL中實作複合外鍵?
    在 SQL 中實作複合外鍵一個常見的資料庫設計涉及使用複合鍵在表之間建立關係。複合鍵是多個列的組合,唯一標識表中的記錄。在這個場景中,你有兩個表,tutorial和group,你需要將tutorial中的複合唯一鍵連結到group中的欄位。 根據MySQL文檔,MySQL支援外鍵對應到複合鍵。但是,...
    程式設計 發佈於2024-12-26
  • 為什麼我的 JComponent 隱藏在 Java 的背景圖片後面?
    為什麼我的 JComponent 隱藏在 Java 的背景圖片後面?
    調試背景圖像隱藏的JComponent在Java 應用程式中使用JComponent(例如JLabels)時,必須確保正確的行為和可見度。如果遇到組件隱藏在背景圖像後面的問題,請考慮以下方法:1。正確設定組件透明度:確保背景面板是透明的,以允許底層組件透過。使用setOpaque(false)方法來...
    程式設計 發佈於2024-12-26

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3