페이지 매김은 대규모 데이터 세트를 처리할 때 데이터베이스 작업의 중요한 부분입니다. 이를 통해 데이터를 관리 가능한 단위로 분할할 수 있으므로 탐색, 처리 및 표시가 더 쉬워집니다. MongoDB는 오프셋 기반과 커서 기반이라는 두 가지 일반적인 페이지 매김 방법을 제공합니다. 두 가지 방법 모두 동일한 목적을 제공하지만 성능과 유용성 면에서 크게, 특히 데이터세트가 커짐에 따라 다릅니다.
두 가지 접근 방식을 살펴보고 커서 기반 페이지 매김이 종종 오프셋 기반 페이지 매김보다 성능이 뛰어난 이유를 살펴보겠습니다.
오프셋 기반 페이지 매김은 간단합니다. 주어진 오프셋에서 시작하여 특정 수의 레코드를 검색합니다. 예를 들어 첫 번째 페이지에서는 레코드 0-9를 검색하고 두 번째 페이지에서는 레코드 10-19를 검색하는 식으로 계속됩니다.
그러나 이 방법에는 중요한 단점이 있습니다. 상위 페이지로 이동할수록 쿼리 속도가 느려집니다. 이는 데이터베이스가 이전 페이지의 레코드를 스캐닝하여 건너뛰어야 하기 때문입니다.오프셋 기반 페이지 매김 코드는 다음과 같습니다.
async function offset_based_pagination(params) { const { page = 5, limit = 100 } = params; const skip = (page - 1) * limit; const results = await collection.find({}).skip(skip).limit(limit).toArray(); console.log(`Offset-based pagination (Page ${page}):`, results.length, "page", page, "skip", skip, "limit", limit); }2.
이 접근 방식은 현재 페이지 이전의 레코드를 스캔할 필요가 없기 때문에 더 효율적입니다. 결과적으로 데이터 세트의 깊이에 관계없이 쿼리 시간이 일정하게 유지됩니다.
커서 기반 페이지 매김 코드는 다음과 같습니다.
async function offset_based_pagination(params) { const { page = 5, limit = 100 } = params; const skip = (page - 1) * limit; const results = await collection.find({}).skip(skip).limit(limit).toArray(); console.log(`Offset-based pagination (Page ${page}):`, results.length, "page", page, "skip", skip, "limit", limit); }이 예에서
lastDocumentId는 이전 페이지의 마지막 문서 ID입니다. 다음 페이지를 쿼리할 때 데이터베이스는 이 값보다 큰 ID를 가진 문서를 가져오므로 다음 레코드 세트로 원활하게 전환됩니다.
3.
async function offset_based_pagination(params) { const { page = 5, limit = 100 } = params; const skip = (page - 1) * limit; const results = await collection.find({}).skip(skip).limit(limit).toArray(); console.log(`Offset-based pagination (Page ${page}):`, results.length, "page", page, "skip", skip, "limit", limit); }
성능 테스트에서오프셋 기반 페이지 매김은 페이지 번호가 증가할수록 더 길어지는 반면, 커서는 기반 페이지 매기기는 일관성을 유지하므로 대규모 데이터 세트에 더 나은 선택이 됩니다. 이 예는 또한 인덱싱의 강력함을 보여줍니다. 인덱스를 제거하고 결과도 확인해보세요!
커서 기반 페이지 매김의 맥락에서 인덱스는 문서의 다음 세트(documentId 기반)를 빠르게 가져오는 것을 보장하고 더 많은 문서가 컬렉션에 추가되어도 성능이 저하되지 않도록 합니다.
const { MongoClient } = require("mongodb"); const uri = "mongodb://localhost:27017"; const client = new MongoClient(uri); client.connect(); const db = client.db("testdb"); const collection = db.collection("testCollection"); async function insertMongoDBRecords() { try { let bulkOps = []; for (let i = 0; i 0) { await collection.bulkWrite(bulkOps); console.log("? Inserted records till now -> ", bulkOps.length); } console.log("MongoDB Insertion Completed"); } catch (err) { console.error("Error in inserting records", err); } } async function offset_based_pagination(params) { const { page = 5, limit = 100 } = params; const skip = (page - 1) * limit; const results = await collection.find({}).skip(skip).limit(limit).toArray(); console.log(`Offset-based pagination (Page ${page}):`, results.length, "page", page, "skip", skip, "limit", limit); } async function cursor_based_pagination(params) { const { lastDocumentId, limit = 100 } = params; const query = lastDocumentId ? { documentId: { $gt: lastDocumentId } } : {}; const results = await collection .find(query) .sort({ documentId: 1 }) .limit(limit) .toArray(); console.log("Cursor-based pagination:", results.length); } async function testMongoDB() { console.time("MongoDB Insert Time:"); await insertMongoDBRecords(); console.timeEnd("MongoDB Insert Time:"); // Create an index on the documentId field await collection.createIndex({ documentId: 1 }); console.log("Index created on documentId field"); console.time("Offset-based pagination Time:"); await offset_based_pagination({ page: 2, limit: 250000 }); console.timeEnd("Offset-based pagination Time:"); console.time("Cursor-based pagination Time:"); await cursor_based_pagination({ lastDocumentId: 170000, limit: 250000 }); console.timeEnd("Cursor-based pagination Time:"); await client.close(); } testMongoDB();
부인 성명: 제공된 모든 리소스는 부분적으로 인터넷에서 가져온 것입니다. 귀하의 저작권이나 기타 권리 및 이익이 침해된 경우 자세한 이유를 설명하고 저작권 또는 권리 및 이익에 대한 증거를 제공한 후 이메일([email protected])로 보내주십시오. 최대한 빨리 처리해 드리겠습니다.
Copyright© 2022 湘ICP备2022001581号-3