"일꾼이 일을 잘하려면 먼저 도구를 갈고 닦아야 한다." - 공자, 『논어』.
첫 장 > 프로그램 작성 > Keras에서 주사위 오류 계수에 대한 사용자 정의 손실 함수를 구현하는 방법은 무엇입니까?

Keras에서 주사위 오류 계수에 대한 사용자 정의 손실 함수를 구현하는 방법은 무엇입니까?

2024-11-08에 게시됨
검색:932

How to Implement a Custom Loss Function for the Dice Error Coefficient in Keras?

Keras의 사용자 정의 손실 함수: 주사위 오류 계수 구현

이 문서에서는 사용자 정의 손실 함수를 만드는 방법을 살펴보겠습니다. Keras에서는 주사위 오류 계수에 중점을 둡니다. 매개변수화된 계수를 구현하고 Keras 요구 사항과의 호환성을 위해 이를 래핑하는 방법을 배우겠습니다.

계수 구현

사용자 정의 손실 함수에는 계수와 계수가 모두 필요합니다. 래퍼 기능. 계수는 목표값과 예측값을 비교하는 주사위 오류를 측정합니다. 아래 Python 표현식을 사용할 수 있습니다:

def dice_hard_coe(y_true, y_pred, threshold=0.5, axis=[1,2], smooth=1e-5):
    # Calculate intersection, labels, and compute hard dice coefficient
    output = tf.cast(output > threshold, dtype=tf.float32)
    target = tf.cast(target > threshold, dtype=tf.float32)
    inse = tf.reduce_sum(tf.multiply(output, target), axis=axis)
    l = tf.reduce_sum(output, axis=axis)
    r = tf.reduce_sum(target, axis=axis)
    hard_dice = (2. * inse   smooth) / (l   r   smooth)
    # Return the mean hard dice coefficient
    return hard_dice

래퍼 함수 만들기

Keras에서는 (y_true, y_pred)만 매개변수로 사용하는 손실 함수가 필요합니다. 따라서 이 요구 사항을 준수하는 다른 함수를 반환하는 래퍼 함수가 필요합니다. 래퍼 함수는 다음과 같습니다:

def dice_loss(smooth, thresh):
    def dice(y_true, y_pred):
        # Calculate the dice coefficient using the coefficient function
        return -dice_coef(y_true, y_pred, smooth, thresh)
    # Return the dice loss function
    return dice

사용자 정의 손실 함수 사용

이제 모델을 컴파일하여 Keras에서 사용자 정의 주사위 손실 함수를 사용할 수 있습니다.

# Build the model
model = my_model()
# Get the Dice loss function
model_dice = dice_loss(smooth=1e-5, thresh=0.5)
# Compile the model
model.compile(loss=model_dice)

이러한 방식으로 사용자 정의 주사위 오류 계수를 구현함으로써 이미지 분할 및 주사위 오류가 관련 측정항목인 기타 작업에 대한 모델 성능을 효과적으로 평가할 수 있습니다.

릴리스 선언문 이 글은 1729307358에서 재인쇄되었습니다. 침해 내용이 있는 경우, [email protected]으로 연락하여 삭제하시기 바랍니다.
최신 튜토리얼 더>

부인 성명: 제공된 모든 리소스는 부분적으로 인터넷에서 가져온 것입니다. 귀하의 저작권이나 기타 권리 및 이익이 침해된 경우 자세한 이유를 설명하고 저작권 또는 권리 및 이익에 대한 증거를 제공한 후 이메일([email protected])로 보내주십시오. 최대한 빨리 처리해 드리겠습니다.

Copyright© 2022 湘ICP备2022001581号-3