이 글에서는 텐서플로우를 사용하여 간단한 채팅 봇을 만드는 방법을 보여줍니다.
데이터로는 PARIS JO JO 2024의 Kaggle 데이터세트를 사용하여 훈련 단계에서 문장을 구했습니다.
내 github에서 종료 코드를 얻을 수 있습니다: https://github.com/victordalet/Kaggle_analytic/tree/feat/paris_2024_olympics
채팅봇의 텐서플로우 데이터세트는 다음과 같습니다.
태그, 패턴, 다양한 응답을 찾을 수 있습니다.
우리의 목표는 JO 베팅 데이터 세트의 다양한 시퀀스를 추가하고 이를 다음과 같은 파일에 추가하는 것입니다.
{ "intents": [ { "tag": "google", "patterns": [ "google", "search", "internet" ], "responses": [ "Redirecting to Google..." ] },
기본 json과 JO의 csv에서 채팅봇 데이터세트를 읽고 이를 분할하고 처리하여 json에 문장을 추가했습니다.
import json class CreateDataset: def __init__(self): self.json_path = 'data.json' self.csv_path = '../paris-2024-faq.csv' with open(self.json_path) as file: self.dataset = json.load(file) f = open(self.csv_path, 'r') dataset_split = f.read().split(";") question = False for data in dataset_split: if question: question = False self.dataset["intents"][-1]["responses"].append(data) if "?" in data: question = True self.dataset["intents"].append({ "tag": "", "patterns": [ data ], "responses": [ ] }) with open(self.json_path, 'w') as f: json.dump(self.dataset, f)
교육 목적으로 텐서플로우 예시를 편집했습니다.
내 코드를 사용하여 실행하려면 첫 번째 인수에 원하는 에포크 수를 추가하세요.
모델이 들어갈 저장 디렉터리를 만들고 이 글의 시작 부분과 같이 github에 있는 class.pkl 및 word.pkl 파일을 추가하세요.
import random import json import pickle import numpy as np import sys import nltk from nltk.stem import WordNetLemmatizer from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.optimizers import SGD class Train: words: list classes: list documents: list ignore_letters: list training: list output_empty: list train_x: list train_y: list model: Sequential epochs: int def __init__(self): self.lemmatizer = WordNetLemmatizer() self.intents = json.loads(open('data.json').read()) self.words = [] self.classes = [] self.documents = [] self.training = [] self.ignore_letters = ['?', '!'] self.epochs = int(sys.argv[1]) def run(self): self.download_nltk_data() self.load_training_data() self.prepare_training_data() self.build_neural_network() self.train() @staticmethod def download_nltk_data(): nltk.download('punkt') nltk.download('wordnet') def load_training_data(self): for intent in self.intents['intents']: for pattern in intent['patterns']: word_list = nltk.word_tokenize(pattern) self.words.extend(word_list) self.documents.append((word_list, intent['tag'])) if intent['tag'] not in self.classes: self.classes.append(intent['tag']) def prepare_training_data(self): self.words = [self.lemmatizer.lemmatize(word) for word in self.words if word not in self.ignore_letters] self.words = sorted(set(self.words)) self.classes = sorted(set(self.classes)) pickle.dump(self.words, open('saves/words.pkl', 'wb')) pickle.dump(self.classes, open('saves/classes.pkl', 'wb')) self.output_empty = [0] * len(self.classes) for document in self.documents: bag = [] word_patterns = document[0] word_patterns = [self.lemmatizer.lemmatize(word.lower()) for word in word_patterns] for word in self.words: bag.append(1) if word in word_patterns else bag.append(0) output_row = list(self.output_empty) output_row[self.classes.index(document[1])] = 1 self.training.append([bag, output_row]) random.shuffle(self.training) self.training = np.array(self.training) self.train_x = list(self.training[:, 0]) self.train_y = list(self.training[:, 1]) def build_neural_network(self): self.model = Sequential() self.model.add(Dense(128, input_shape=(len(self.train_x[0]),), activation='relu')) self.model.add(Dropout(0.5)) self.model.add(Dense(64, activation='relu')) self.model.add(Dropout(0.5)) self.model.add(Dense(len(self.train_y[0]), activation='softmax')) sgd = SGD(lr=0.01, momentum=0.9, nesterov=True) self.model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) def train(self): self.model.fit(np.array(self.train_x), np.array(self.train_y), epochs=self.epochs, batch_size=5, verbose=1) self.model.save('saves/chatbot_model.model') if __name__ == "__main__": Train().run()
임의의 메시지를 받는 테스트 메서드를 사용하여 ChatBot 클래스를 만듭니다.
get_response 메소드를 사용하여 이 챗봇을 애플리케이션에 추가할 수 있습니다. 예를 들어 웹사이트에 챗봇을 두기 위해 플라스크 API의 내 프로젝트 중 하나에서 이를 호출합니다.
import random import json import pickle import numpy as np import nltk from nltk.stem import WordNetLemmatizer from tensorflow.keras.models import load_model class ChatBot: lemmatizer: WordNetLemmatizer intents: dict words: list classes: list model: load_model ERROR_THRESHOLD = 0.25 def __init__(self): self.download_nltk_data() self.lemmatizer = WordNetLemmatizer() self.intents = json.loads(open('data.json').read()) self.words = pickle.load(open('saves/words.pkl', 'rb')) self.classes = pickle.load(open('saves/classes.pkl', 'rb')) self.model = load_model('saves/chatbot_model.model') @staticmethod def download_nltk_data(): nltk.download('punkt') nltk.download('wordnet') def clean_up_sentence(self, sentence): sentence_words = nltk.word_tokenize(sentence) sentence_words = [self.lemmatizer.lemmatize(word) for word in sentence_words] return sentence_words def bag_of_words(self, sentence): sentence_words = self.clean_up_sentence(sentence) bag = [0] * len(self.words) for w in sentence_words: for i, word in enumerate(self.words): if word == w: bag[i] = 1 return np.array(bag) def predict_class(self, sentence): bow = self.bag_of_words(sentence) res = self.model.predict(np.array([bow]))[0] results = [[i, r] for i, r in enumerate(res) if r > self.ERROR_THRESHOLD] results.sort(key=lambda x: x[1], reverse=True) return_list = [] for r in results: return_list.append({'intent': self.classes[r[0]], 'probability': str(r[1])}) return return_list def get_response(self, intents_list): intents_json = self.intents tag = intents_list[0]['intent'] list_of_intents = intents_json['intents'] for i in list_of_intents: if i['tag'] == tag: result = random.choice(i['responses']) break return result def test(self): while True: message = input("") ints = self.predict_class(message) res = self.get_response(ints) print(res)
부인 성명: 제공된 모든 리소스는 부분적으로 인터넷에서 가져온 것입니다. 귀하의 저작권이나 기타 권리 및 이익이 침해된 경우 자세한 이유를 설명하고 저작권 또는 권리 및 이익에 대한 증거를 제공한 후 이메일([email protected])로 보내주십시오. 최대한 빨리 처리해 드리겠습니다.
Copyright© 2022 湘ICP备2022001581号-3