"यदि कोई कर्मचारी अपना काम अच्छी तरह से करना चाहता है, तो उसे पहले अपने औजारों को तेज करना होगा।" - कन्फ्यूशियस, "द एनालेक्ट्स ऑफ कन्फ्यूशियस। लू लिंगगोंग"
मुखपृष्ठ > प्रोग्रामिंग > चैट बॉट बनाएं - जो पेरिस 4

चैट बॉट बनाएं - जो पेरिस 4

2024-08-31 को प्रकाशित
ब्राउज़ करें:313

Create chat bot - JO PARIS 4

इस आलेख में, मैं दिखाता हूं कि टेंसरफ़्लो के साथ एक सरल चैट बॉट कैसे बनाया जाए।

डेटा के लिए, मैं प्रशिक्षण चरण में वाक्य प्राप्त करने के लिए पेरिस जो जो 2024 से एक कागल डेटासेट का उपयोग करता हूं।

आप मेरे जीथब में फिनिश कोड प्राप्त कर सकते हैं: https://github.com/victordalet/Kaggle_analyse/tree/feat/paris_2024_olympics


I - डिफ़ॉल्ट चैट बॉट डेटासेट

चैट बॉट पर एक टेंसरफ़्लो डेटासेट इस तरह दिखता है।
हम एक टैग, एक पैटर्न और विभिन्न प्रतिक्रियाएँ पा सकते हैं।
हमारा लक्ष्य JO बेटिंग डेटासेट से विभिन्न अनुक्रमों को जोड़ना और उन्हें इस तरह की फ़ाइल में जोड़ना होगा।

{
  "intents": [
    {
      "tag": "google",
      "patterns": [
        "google",
        "search",
        "internet"
      ],
      "responses": [
        "Redirecting to Google..."
      ]
    },

II - डाटा प्रोसेसिंग

मैंने डिफ़ॉल्ट json और JO के csv में एक चैट बॉट डेटासेट पढ़ा और json में वाक्य जोड़ने के लिए इसे विभाजित और संसाधित किया

import json


class CreateDataset:
    def __init__(self):
        self.json_path = 'data.json'
        self.csv_path = '../paris-2024-faq.csv'
        with open(self.json_path) as file:
            self.dataset = json.load(file)
        f = open(self.csv_path, 'r')
        dataset_split = f.read().split(";")
        question = False
        for data in dataset_split:
            if question:
                question = False
                self.dataset["intents"][-1]["responses"].append(data)

            if "?" in data:
                question = True
                self.dataset["intents"].append({
                    "tag": "",
                    "patterns": [
                        data
                    ],
                    "responses": [
                    ]
                })
        with open(self.json_path, 'w') as f:
            json.dump(self.dataset, f)

तृतीय - प्रशिक्षण

प्रशिक्षण उद्देश्यों के लिए, मैंने एक टेंसरफ़्लो उदाहरण संपादित किया है।
यदि आप इसे चलाने के लिए मेरा कोड लेते हैं, तो पहले तर्क में अपने इच्छित युगों की संख्या जोड़ें।
एक सेव डायरेक्टरी बनाएं जहां आपका मॉडल जाएगा, और क्लासेस.पीकेएल और वर्ड्स.पीकेएल फाइलों के अंदर जोड़ें जो इस आलेख की शुरुआत में जीथब में हैं।

import random
import json
import pickle
import numpy as np
import sys

import nltk
from nltk.stem import WordNetLemmatizer

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import SGD


class Train:
    words: list
    classes: list
    documents: list
    ignore_letters: list
    training: list
    output_empty: list
    train_x: list
    train_y: list
    model: Sequential
    epochs: int

    def __init__(self):
        self.lemmatizer = WordNetLemmatizer()
        self.intents = json.loads(open('data.json').read())
        self.words = []
        self.classes = []
        self.documents = []
        self.training = []
        self.ignore_letters = ['?', '!']
        self.epochs = int(sys.argv[1])

    def run(self):
        self.download_nltk_data()
        self.load_training_data()
        self.prepare_training_data()
        self.build_neural_network()
        self.train()

    @staticmethod
    def download_nltk_data():
        nltk.download('punkt')
        nltk.download('wordnet')

    def load_training_data(self):
        for intent in self.intents['intents']:
            for pattern in intent['patterns']:
                word_list = nltk.word_tokenize(pattern)
                self.words.extend(word_list)
                self.documents.append((word_list, intent['tag']))
                if intent['tag'] not in self.classes:
                    self.classes.append(intent['tag'])

    def prepare_training_data(self):
        self.words = [self.lemmatizer.lemmatize(word)
                      for word in self.words
                      if word not in self.ignore_letters]

        self.words = sorted(set(self.words))
        self.classes = sorted(set(self.classes))
        pickle.dump(self.words, open('saves/words.pkl', 'wb'))
        pickle.dump(self.classes, open('saves/classes.pkl', 'wb'))

        self.output_empty = [0] * len(self.classes)
        for document in self.documents:
            bag = []
            word_patterns = document[0]
            word_patterns = [self.lemmatizer.lemmatize(word.lower())
                             for word in word_patterns]
            for word in self.words:
                bag.append(1) if word in word_patterns else bag.append(0)

            output_row = list(self.output_empty)
            output_row[self.classes.index(document[1])] = 1
            self.training.append([bag, output_row])

        random.shuffle(self.training)
        self.training = np.array(self.training)

        self.train_x = list(self.training[:, 0])
        self.train_y = list(self.training[:, 1])

    def build_neural_network(self):
        self.model = Sequential()
        self.model.add(Dense(128, input_shape=(len(self.train_x[0]),),
                             activation='relu'))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(64, activation='relu'))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(len(self.train_y[0]), activation='softmax'))

        sgd = SGD(lr=0.01, momentum=0.9, nesterov=True)
        self.model.compile(loss='categorical_crossentropy',
                           optimizer=sgd,
                           metrics=['accuracy'])

    def train(self):
        self.model.fit(np.array(self.train_x),
                       np.array(self.train_y),
                       epochs=self.epochs,
                       batch_size=5,
                       verbose=1)
        self.model.save('saves/chatbot_model.model')


if __name__ == "__main__":
    Train().run()

चतुर्थ - परीक्षण

मैं एक परीक्षण विधि के साथ एक चैटबॉट क्लास बनाता हूं जो एक यादृच्छिक संदेश लेता है।
आप इस चैटबॉट को अपने एप्लिकेशन में जोड़ने के लिए get_response विधि का उपयोग कर सकते हैं, उदाहरण के लिए मैं इसे एक वेबसाइट में अपना चैटबॉट रखने के लिए फ्लास्क एपीआई में अपने एक प्रोजेक्ट में कॉल करता हूं।

import random
import json
import pickle
import numpy as np

import nltk
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import load_model


class ChatBot:
    lemmatizer: WordNetLemmatizer
    intents: dict
    words: list
    classes: list
    model: load_model
    ERROR_THRESHOLD = 0.25

    def __init__(self):
        self.download_nltk_data()
        self.lemmatizer = WordNetLemmatizer()
        self.intents = json.loads(open('data.json').read())
        self.words = pickle.load(open('saves/words.pkl', 'rb'))
        self.classes = pickle.load(open('saves/classes.pkl', 'rb'))
        self.model = load_model('saves/chatbot_model.model')

    @staticmethod
    def download_nltk_data():
        nltk.download('punkt')
        nltk.download('wordnet')

    def clean_up_sentence(self, sentence):
        sentence_words = nltk.word_tokenize(sentence)
        sentence_words = [self.lemmatizer.lemmatize(word)
                          for word in sentence_words]
        return sentence_words

    def bag_of_words(self, sentence):
        sentence_words = self.clean_up_sentence(sentence)
        bag = [0] * len(self.words)
        for w in sentence_words:
            for i, word in enumerate(self.words):
                if word == w:
                    bag[i] = 1
        return np.array(bag)

    def predict_class(self, sentence):
        bow = self.bag_of_words(sentence)
        res = self.model.predict(np.array([bow]))[0]
        results = [[i, r]
                   for i, r in enumerate(res)
                   if r > self.ERROR_THRESHOLD]
        results.sort(key=lambda x: x[1], reverse=True)
        return_list = []
        for r in results:
            return_list.append({'intent': self.classes[r[0]],
                                'probability': str(r[1])})
        return return_list

    def get_response(self, intents_list):
        intents_json = self.intents
        tag = intents_list[0]['intent']
        list_of_intents = intents_json['intents']
        for i in list_of_intents:
            if i['tag'] == tag:
                result = random.choice(i['responses'])
                break
        return result

    def test(self):
        while True:
            message = input("")
            ints = self.predict_class(message)
            res = self.get_response(ints)
            print(res)
विज्ञप्ति वक्तव्य यह आलेख यहां पुन: प्रस्तुत किया गया है: https://dev.to/victordalet/create-chat-bot-jo-paris-2024-4dnf?1 यदि कोई उल्लंघन है, तो कृपया इसे हटाने के लिए [email protected] से संपर्क करें।
नवीनतम ट्यूटोरियल अधिक>

चीनी भाषा का अध्ययन करें

अस्वीकरण: उपलब्ध कराए गए सभी संसाधन आंशिक रूप से इंटरनेट से हैं। यदि आपके कॉपीराइट या अन्य अधिकारों और हितों का कोई उल्लंघन होता है, तो कृपया विस्तृत कारण बताएं और कॉपीराइट या अधिकारों और हितों का प्रमाण प्रदान करें और फिर इसे ईमेल पर भेजें: [email protected] हम इसे आपके लिए यथाशीघ्र संभालेंगे।

Copyright© 2022 湘ICP备2022001581号-3