"Si un ouvrier veut bien faire son travail, il doit d'abord affûter ses outils." - Confucius, "Les Entretiens de Confucius. Lu Linggong"
Page de garde > La programmation > How to Optimize JSON Response Performance in FastAPI for Large Data?

How to Optimize JSON Response Performance in FastAPI for Large Data?

Publié le 2024-11-08
Parcourir:201

How to Optimize JSON Response Performance in FastAPI for Large Data?

Improving Performance for JSON Response in FastAPI with Large Data

FastAPI users encounter significant delays when returning voluminous JSON data via endpoints. A comprehensive solution involves addressing several factors, including data retrieval, serialization, and client-side display.

Data Extraction and Reading

As highlighted in the example code, data is initially extracted from a Parquet file using Pandas' read_parquet() function, which converts the data into a Pandas DataFrame. To enhance efficiency, consider utilizing alternative libraries such as Dask, specifically designed for handling large datasets. Dask's read_parquet() method can significantly improve data reading speed.

JSON Serialization

The subsequent JSON serialization step proves to be the main performance bottleneck. By default, FastAPI employs Python's standard json.dumps() function, resulting in suboptimal performance. To accelerate this process, alternative JSON encoders like orjson or ujson can be used, greatly reducing serialization times.

Response Type Optimization

In certain scenarios, returning a Pandas DataFrame as a JSON response may lead to memory issues due to RAM allocation for both the DataFrame and the JSON output. To address this, consider using df.to_json() without specifying a file path, which streams the JSON output directly to the client without storing it in memory.

Client-side Display

Even with optimized serialization techniques, displaying substantial data on the client-side browser can introduce additional delays due to data parsing and rendering. To mitigate this, explore options such as providing a download link instead of in-browser display, thus offloading the data processing to the client's machine.

By implementing these techniques, developers can dramatically enhance the performance of FastAPI endpoints returning large amounts of JSON data, ensuring a responsive and efficient user experience.

Déclaration de sortie Cet article est réimprimé à l'adresse : 1729263623. En cas d'infraction, veuillez contacter [email protected] pour le supprimer.
Dernier tutoriel Plus>

Clause de non-responsabilité: Toutes les ressources fournies proviennent en partie d'Internet. En cas de violation de vos droits d'auteur ou d'autres droits et intérêts, veuillez expliquer les raisons détaillées et fournir une preuve du droit d'auteur ou des droits et intérêts, puis l'envoyer à l'adresse e-mail : [email protected]. Nous nous en occuperons pour vous dans les plus brefs délais.

Copyright© 2022 湘ICP备2022001581号-3