Fonction de perte personnalisée dans Keras : implémentation du coefficient d'erreur de dés
Dans cet article, nous explorerons comment créer une fonction de perte personnalisée à Keras, en se concentrant sur le coefficient d'erreur des dés. Nous apprendrons à implémenter un coefficient paramétré et à l'envelopper pour être compatible avec les exigences de Keras.
Implémentation du coefficient
Notre fonction de perte personnalisée nécessitera à la fois un coefficient et une fonction wrapper. Le coefficient mesure l'erreur de dés, qui compare les valeurs cibles et prédites. Nous pouvons utiliser l'expression Python ci-dessous :
def dice_hard_coe(y_true, y_pred, threshold=0.5, axis=[1,2], smooth=1e-5):
# Calculate intersection, labels, and compute hard dice coefficient
output = tf.cast(output > threshold, dtype=tf.float32)
target = tf.cast(target > threshold, dtype=tf.float32)
inse = tf.reduce_sum(tf.multiply(output, target), axis=axis)
l = tf.reduce_sum(output, axis=axis)
r = tf.reduce_sum(target, axis=axis)
hard_dice = (2. * inse smooth) / (l r smooth)
# Return the mean hard dice coefficient
return hard_dice
Création de la fonction Wrapper
Keras nécessite que les fonctions de perte prennent uniquement (y_true, y_pred) comme paramètres. Par conséquent, nous avons besoin d’une fonction wrapper qui renvoie une autre fonction conforme à cette exigence. Notre fonction wrapper sera :
def dice_loss(smooth, thresh):
def dice(y_true, y_pred):
# Calculate the dice coefficient using the coefficient function
return -dice_coef(y_true, y_pred, smooth, thresh)
# Return the dice loss function
return dice
Utilisation de la fonction de perte personnalisée
Maintenant, nous pouvons utiliser notre fonction de perte de dés personnalisée dans Keras en compilant le modèle avec elle :
# Build the model
model = my_model()
# Get the Dice loss function
model_dice = dice_loss(smooth=1e-5, thresh=0.5)
# Compile the model
model.compile(loss=model_dice)
En implémentant le coefficient d'erreur de dés personnalisé de cette manière, nous pouvons évaluer efficacement les performances du modèle pour la segmentation d'images et d'autres tâches pour lesquelles l'erreur de dés est une métrique pertinente.
Clause de non-responsabilité: Toutes les ressources fournies proviennent en partie d'Internet. En cas de violation de vos droits d'auteur ou d'autres droits et intérêts, veuillez expliquer les raisons détaillées et fournir une preuve du droit d'auteur ou des droits et intérêts, puis l'envoyer à l'adresse e-mail : [email protected]. Nous nous en occuperons pour vous dans les plus brefs délais.
Copyright© 2022 湘ICP备2022001581号-3