"Si un ouvrier veut bien faire son travail, il doit d'abord affûter ses outils." - Confucius, "Les Entretiens de Confucius. Lu Linggong"
Page de garde > La programmation > Comment implémenter une fonction de perte personnalisée pour le coefficient d'erreur des dés dans Keras ?

Comment implémenter une fonction de perte personnalisée pour le coefficient d'erreur des dés dans Keras ?

Publié le 2024-11-08
Parcourir:370

How to Implement a Custom Loss Function for the Dice Error Coefficient in Keras?

Fonction de perte personnalisée dans Keras : implémentation du coefficient d'erreur de dés

Dans cet article, nous explorerons comment créer une fonction de perte personnalisée à Keras, en se concentrant sur le coefficient d'erreur des dés. Nous apprendrons à implémenter un coefficient paramétré et à l'envelopper pour être compatible avec les exigences de Keras.

Implémentation du coefficient

Notre fonction de perte personnalisée nécessitera à la fois un coefficient et une fonction wrapper. Le coefficient mesure l'erreur de dés, qui compare les valeurs cibles et prédites. Nous pouvons utiliser l'expression Python ci-dessous :

def dice_hard_coe(y_true, y_pred, threshold=0.5, axis=[1,2], smooth=1e-5):
    # Calculate intersection, labels, and compute hard dice coefficient
    output = tf.cast(output > threshold, dtype=tf.float32)
    target = tf.cast(target > threshold, dtype=tf.float32)
    inse = tf.reduce_sum(tf.multiply(output, target), axis=axis)
    l = tf.reduce_sum(output, axis=axis)
    r = tf.reduce_sum(target, axis=axis)
    hard_dice = (2. * inse   smooth) / (l   r   smooth)
    # Return the mean hard dice coefficient
    return hard_dice

Création de la fonction Wrapper

Keras nécessite que les fonctions de perte prennent uniquement (y_true, y_pred) comme paramètres. Par conséquent, nous avons besoin d’une fonction wrapper qui renvoie une autre fonction conforme à cette exigence. Notre fonction wrapper sera :

def dice_loss(smooth, thresh):
    def dice(y_true, y_pred):
        # Calculate the dice coefficient using the coefficient function
        return -dice_coef(y_true, y_pred, smooth, thresh)
    # Return the dice loss function
    return dice

Utilisation de la fonction de perte personnalisée

Maintenant, nous pouvons utiliser notre fonction de perte de dés personnalisée dans Keras en compilant le modèle avec elle :

# Build the model
model = my_model()
# Get the Dice loss function
model_dice = dice_loss(smooth=1e-5, thresh=0.5)
# Compile the model
model.compile(loss=model_dice)

En implémentant le coefficient d'erreur de dés personnalisé de cette manière, nous pouvons évaluer efficacement les performances du modèle pour la segmentation d'images et d'autres tâches pour lesquelles l'erreur de dés est une métrique pertinente.

Déclaration de sortie Cet article est réimprimé à l'adresse : 1729307358. En cas d'infraction, veuillez contacter [email protected] pour le supprimer.
Dernier tutoriel Plus>

Clause de non-responsabilité: Toutes les ressources fournies proviennent en partie d'Internet. En cas de violation de vos droits d'auteur ou d'autres droits et intérêts, veuillez expliquer les raisons détaillées et fournir une preuve du droit d'auteur ou des droits et intérêts, puis l'envoyer à l'adresse e-mail : [email protected]. Nous nous en occuperons pour vous dans les plus brefs délais.

Copyright© 2022 湘ICP备2022001581号-3