"Si un trabajador quiere hacer bien su trabajo, primero debe afilar sus herramientas." - Confucio, "Las Analectas de Confucio. Lu Linggong"
Página delantera > Programación > Cómo realizar voz en tiempo real con Dify API

Cómo realizar voz en tiempo real con Dify API

Publicado el 2024-11-01
Navegar:535

Dify es una plataforma SaaS de código abierto para crear flujos de trabajo LLM en línea. Estoy usando la API para crear una experiencia de IA conversacional en mi aplicación. Tenía dificultades para obtener transmisiones TTS como respuesta API y reproducirlas. Aquí demuestro cómo procesar las transmisiones de audio y reproducirlas correctamente.

Estoy usando el punto final API https://api.dify.ai/v1/chat-messages para chat de texto. Devuelve datos de audio en la misma secuencia que la respuesta de texto si habilitamos la función Texto a voz en nuestras aplicaciones Dify.

Presione el botón AGREGAR FUNCIÓN y agregue la función Texto a voz.
How to realize Real-Time Speech with Dify API

Puedes comprobar la respuesta de la API con el siguiente comando curl.

curl -X POST 'https://api.dify.ai/v1/chat-messages' \
--header 'Authorization: Bearer YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
    "inputs": {},
    "query": "What are the specs of the iPhone 13 Pro Max?",
    "response_mode": "streaming",
    "conversation_id": "",
    "user": "abc-123",
    "files": []
}'

Lo demuestro en TypeScript/JavaScript, pero puedes aplicar la misma lógica a tu lenguaje de programación.

Anatomía de los datos transmitidos

Primero, comprendamos qué tipo de datos utiliza Dify para las transmisiones.

Formato de datos transmitidos

Dify utiliza el siguiente formato de datos de texto. Es como líneas JSON pero no es exactamente igual.

data: {"event": "workflow_started", "conversation_id": "065fb118-35d4-4524-a067-a70338ece575", "message_id": "3f0fe3cf-5aa1-4f7c-8abe-2505bf07ae8f", "created_at": 1724478014, "task_id": "dacb2d5c-a6f5-44b5-b5a6-de000f24aeba", "workflow_run_id": "50100b30-e458-4632-ad7d-8dd383823376", "data": {"id": "50100b30-e458-4632-ad7d-8dd383823376", "workflow_id": "debdb4fa-dcab-4233-9413-fd6d17b9e36a", "sequence_number": 334, "inputs": {"sys.query": "What are the specs of the iPhone 13 Pro Max?", "sys.files": [], "sys.conversation_id": "065fb118-35d4-4524-a067-a70338ece575", "sys.user_id": "abc-123"}, "created_at": 1724478014}}

data: {"event": "node_started", "conversation_id": "065fb118-35d4-4524-a067-a70338ece575", "message_id": "3f0fe3cf-5aa1-4f7c-8abe-2505bf07ae8f", "created_at": 1724478014, "task_id": "dacb2d5c-a6f5-44b5-b5a6-de000f24aeba", "workflow_run_id": "50100b30-e458-4632-ad7d-8dd383823376", "data": {"id": "bf912f43-29dd-4ee2-aefa-0fabdf379257", "node_id": "1721365917005", "node_type": "start", "title": "\u958b\u59cb", "index": 1, "predecessor_node_id": null, "inputs": null, "created_at": 1724478013, "extras": {}}}

data: {"event": "node_finished", "conversation_id": "065fb118-35d4-4524-a067-a70338ece575", "message_id": "3f0fe3cf-5aa1-4f7c-8abe-2505bf07ae8f", "created_at": 1724478014, "task_id": "dacb2d5c-a6f5-44b5-b5a6-de000f24aeba", "workflow_run_id": "50100b30-e458-4632-ad7d-8dd383823376", "data": {"id": "bf912f43-29dd-4ee2-aefa-0fabdf379257", "node_id": "1721365917005", "node_type": "start", "title": "\u958b\u59cb", "index": 1, "predecessor_node_id": null, "inputs": {"sys.query": "What are the specs of the iPhone 13 Pro Max?", "sys.files": [], "sys.conversation_id": "065fb118-35d4-4524-a067-a70338ece575", "sys.user_id": "abc-123", "sys.dialogue_count": 1}, "process_data": null, "outputs": {"sys.query": "What are the specs of the iPhone 13 Pro Max?", "sys.files": [], "sys.conversation_id": "065fb118-35d4-4524-a067-a70338ece575", "sys.user_id": "abc-123", "sys.dialogue_count": 1}, "status": "succeeded", "error": null, "elapsed_time": 0.001423838548362255, "execution_metadata": null, "created_at": 1724478013, "finished_at": 1724478013, "files": []}}

data: {"event": "node_started", "conversation_id": "065fb118-35d4-4524-a067-a70338ece575", "message_id": "3f0fe3cf-5aa1-4f7c-8abe-2505bf07ae8f", "created_at": 1724478014, "task_id": "dacb2d5c-a6f5-44b5-b5a6-de000f24aeba", "workflow_run_id": "50100b30-e458-4632-ad7d-8dd383823376", "data": {"id": "89ed58ab-6157-499b-81b2-92b1336969a5", "node_id": "llm", "node_type": "llm", "title": "LLM", "index": 2, "predecessor_node_id": "1721365917005", "inputs": null, "created_at": 1724478013, "extras": {}}}

...

En la respuesta, Dify envía respuesta de texto y datos de audio.

Ejemplo de respuesta de línea de texto

data: {"event": "message", "conversation_id": "aa13eb24-e90a-4c5d-a36b-756f0e3be8f8", "message_id": "5be739a9-09ba-4444-9905-a2f37f8c7a21", "created_at": 1724301648, "task_id": "0643f770-e9d3-408f-b771-bb2e9430b4f9", "id": "5be739a9-09ba-4444-9905-a2f37f8c7a21", "answer": "MP"}

Línea de ejemplo de datos de audio

data: {"event": "tts_message", "conversation_id": "aa13eb24-e90a-4c5d-a36b-756f0e3be8f8", "message_id": "5be739a9-09ba-4444-9905-a2f37f8c7a21", "created_at": 1724301648, "task_id": "0643f770-e9d3-408f-b771-bb2e9430b4f9", "audio": "//PkxABhvDm0DVp4ACUUfvWc1CFlh0tR9Oh7LxzHRsGBuGx155x3JqTJiwKKZf8wIcxpMzJU0h4zhgyQwwwIsgWQMAALQMkanBTjfCPgZwFsDOGGIYJoJoJoJoPQPQLYEgAOwM4SMXMW8TcNWGrEPEME0HoIQTg0DQNA0C5k7IOLeJuDnDVi5nWyJwgghAagQwTQQgJAGrDVibiFhqw1YR8HOEjBUA5AcgagQwTQTQQgJAAtgLYKsQ8hZc0PV7OrE4SgQgFIAsAQAwA6H0Uv4t4m4m49Yt4uYOQHIBkAyAqAkAuB0Mm6UeKxDGRrIODkByBqBNBCA1ARwHIEgBVg5wkY41W2GgdEVDFBNe HicQw0ydk7HrHrIWXM62d48ePNfCkNATcTcNWGrCRhqxDxcwMYBwBkByCGC4EILgoJTQUDeW8W8TcTchZ1qBWIYchOBbBCA1AhgSMJGGrFzLmh6fL LeBkAyAZAcgSAXAhB0Kxnj4YDkJwXA6FAzwj8IIJoJoPQXA6EPOcg4R8FOBnCRljRAwlwoh4EUwLhFTCVA MR0R8wyxOhgAwwDgJjBUABMM0hMxBgnTPtMrMBEEcwJQCzIXIdMZMG821DmjDKHJAwLDKHRMQsJkwbwVRoFs//PkxEx5dDnwAZ7wANHgEUFJHGCUCQp3LWCQQYGAATI5QzwHBJF4UFktpfATT2l0goAGNADLOU64HAMCQCK50szABAIkDS2/j8gl6l6Di7QgBEiAfMEADBnyZBgeAWCMK4xvBbhoRZj1M ktsNMTrMNcHEwHQEzAjAHMGQAQwRQZTBHALMGMDkzhh2jGhLtMgsMMwfhOzCnGLMMcKgwOw8pqHMoGtvdDzos0AIAiXIsBAmGsRFtYcBABmB0AUYjQfhhDAfjoCrETAGArMOAJ4iAAMCMFkwXwh5fffuhpYMhyP2bl3MVAJQrSYQDsna7G2 fx/GvyAwUQbTAdAFCAHVKyIAduTXHZZXDjNS57/VeVJ5 JBJ 0kATkCSells8/NBt/2/5Dj1s chDBYSINutNS9FQwDwBWHjgASKRgAAJOyYC4Ao0CMNAKBgB6KK1hYBkAAHROM9mLsknb8avTcB0MerV6jl7llE70egOerRh9WcP/FoHqtVsO/In2f G2tsdnH L/KSSvBQB4OATam27Yi4jiBgBFOpq15bTQU6k1G4LoWo1mMAwDQwlBEzEnKsMkA7c5JYuTOzK2MvAbEysSPTM dOOn1XEzGgIzXzmPODVvs1cyNTJxQ9MsAWwy//PkxDlz7DIMAd7gAek5EwnjcjX9QVN1N0czFyijQKOmMi4IYw8RvzFvCHMHYBQwdQlTRxVNvm8ycGjLYlMTAQ=="}

Podemos distinguir líneas JSON de datos de audio verificando la propiedad del evento. Audio JSON tiene tts_message como valor. El binario de audio mp3 se almacena en la propiedad de audio de los JSON en formato base64.

Problemas en el manejo de datos.

El primer problema que tenemos cuando reproducimos audio TTS en tiempo real es que las líneas JSON se dividen en paquetes y cada paquete no son datos JSON válidos tal como están.

Ejemplo de paquete cortado por la mitad

euimRrhsPMZiMAl BqSZMDmIkQEcDb/8 TEtHm8MhwA3p/p8dA0CCpAxwMMPABoYMIWwUDG6BRmiYZg2G6gRidGanOm5i5iaIYmfkH8Z/FmEopqJGZKXihYEIRxCKYKtlQuMvPjPQIwUVFFECDRnRCYEimGmA6cji41yQMImMEmhaHrVKpCxo2OYx6Q5RcJKAKkah4X6MckHEqdwKgHGHltDUjCy46HMgTCpwodAM8KijREwSSEk5hB4gRGFfC0ouYoeDiYtNREDgKQsTT6EI4egmMMBxpQZmoUJmAAg6YPDmQISgSECAZQOLfAUEQAG/dgxAVkxfFHGorEHB4CS Yugwk2gq8akIwMsZIuIzUSrCAGm1iBnoYA8lcoYSlaIJ5RjCblwbsh8sB3skA7Gcx3zmSOKnXNJO6ObKklhuYjlVL1dSMhgwVJtFzMeWFufNKy3ODmCExBTUUzLjEwMKqqqqqqqqqqqqqqqqqqCIEWFIAA4DAWKkMDDIBA4lBqGDdmZwzAkGJFoYiwEV0IQOQHg1AATJiUM6F0z2fDE6PMvlc6DhTMJ MNH4xWwzBwKMMCgHAwwUFQwjGEgMgovgIBMIMECYxYSDKAwSoMOBC4Ez682pEZIB8kBuiawZEaSnFAjIEwSFRxGUJIXMGRMmfNCPApcKL/8 TEiVdEKlJm5pM9gz0MyScwo04BgqjEFh489MGKVw=="}

El paquete comienza desde el medio de una línea JSON. Tenemos que combinar varios paquetes para obtener líneas JSON válidas.

El segundo problema es que el fragmento de datos de audio en un JSON no es un dato de audio válido. Los datos se cortan en medio de fotogramas de mp3.

Implementación

Para manejar los datos divididos de JSON y mp3, tenemos que hacerlo de alguna manera inteligente. El flujo del proceso es el siguiente:

How to realize Real-Time Speech with Dify API

Primero, tenemos que obtener datos JSON válidos y dividirlos en JSON mientras recibimos paquetes. Cuando recibimos un paquete con \n al final, podemos decir que la concatenación de los paquetes recibidos hasta el momento no se corta por la mitad. El pseudocódigo es así.

let packets = []
stream.on('data', (bytes) => {
   const text = bytes.toString()
   packets.push(text)
   if (text.endsWith('\n')) {
      // Extract audio data from the packets.
      const audioChunks = extractAudioChunks(packets.join(''))
      // Clear the packet array
      packets = []
   }
})

En segundo lugar, tenemos que dividir los fragmentos de audio en fotogramas mp3. Concatenamos los fragmentos de audio en un binario y encontramos cada cuadro de mp3 en él.

const mp3Frames = []
const binaryToProcess = Buffer.concat([...audioChunks])
let frameStartIndex = 0
for (let i = 0; i 



Esta no es la implementación completa de la división en fotogramas mp3. En el proceso real, debemos considerar los casos en los que tenemos bytes restantes cuando extrajimos fotogramas mp3 del binario de audio y usamos el resto como el comienzo de los bytes de audio en la siguiente iteración. Consulte mi repositorio de Github para conocer la implementación completa.

Declaración de liberación Este artículo se reproduce en: https://dev.to/ku6ryo/how-to-realize-reale-speech-with-dify-api- 4ii1?1 Si hay alguna infracción, comuníquese con [email protected] para eliminarlo.
Último tutorial Más>

Descargo de responsabilidad: Todos los recursos proporcionados provienen en parte de Internet. Si existe alguna infracción de sus derechos de autor u otros derechos e intereses, explique los motivos detallados y proporcione pruebas de los derechos de autor o derechos e intereses y luego envíelos al correo electrónico: [email protected]. Lo manejaremos por usted lo antes posible.

Copyright© 2022 湘ICP备2022001581号-3