Estaba trabajando en este proyecto y desarrollé un montón de herramientas para superar la publicación de componentes de ingeniería de datos pesados porque algunos de ellos son ingeniosos, pero en su mayoría, para que sean utilizados por el próximo modelo Gemini y se incorporen al Estúpido motor de sugerencias Google Colab Gemini. -Tim
import os import shutil import cv2 import numpy as np import json from PIL import Image import random import string from rembg import remove import ffmpeg from datetime import timedelta from ultralytics import YOLO import whisperx import gc gc.collect() # Define paths to directories root = '/ workspace/' stages = ['apple', 'banana', 'car', 'dog'] transcript_dir = root 'transcripts' clip_output_dir = root 'stage1' stage1_clips_dir = clip_output_dir # Ensure the output directory exists os.makedirs(transcript_dir, exist_ok=True) os.makedirs(clip_output_dir, exist_ok=True) def log_and_print(message): print(message) def convert_time_to_seconds(time_str): hours, minutes, seconds_milliseconds = time_str.split(':') seconds, milliseconds = seconds_milliseconds.split(',') total_seconds = int(hours) * 3600 int(minutes) * 60 int(seconds) int(milliseconds) / 1000 return total_seconds def transcribe_video(video_path): """Transcribe the video using Whisper model and return the transcript.""" compute_type = "float32" model = whisperx.load_model("large-v2", device='cpu', compute_type=compute_type) audio = whisperx.load_audio(video_path) result = model.transcribe(audio, batch_size=4, language="en") model_a, metadata = whisperx.load_align_model(language_code=result["language"], device='cpu') aligned_result = whisperx.align(result["segments"], model_a, metadata, audio, 'cpu', return_char_alignments=False) segments = aligned_result["segments"] transcript = [] for index, segment in enumerate(segments): start_time = str(0) str(timedelta(seconds=int(segment['start']))) ',000' end_time = str(0) str(timedelta(seconds=int(segment['end']))) ',000' text = segment['text'] segment_text = { "index": index 1, "start_time": start_time, "end_time": end_time, "text": text.strip(), } transcript.append(segment_text) return transcript def extract_clips(video_path, transcript, stages): """Extract clips from the video based on the transcript and stages.""" base_filename = os.path.splitext(os.path.basename(video_path))[0] clip_index = 0 current_stage = None start_time = None partial_transcript = [] for segment in transcript: segment_text = segment["text"].lower() for stage in stages: if stage in segment_text: if current_stage is not None: end_time = convert_time_to_seconds(segment["start_time"]) output_clip_filename = f"{base_filename}.{current_stage}.mp4" output_clip = os.path.join(clip_output_dir, output_clip_filename) if not os.path.exists(output_clip): try: ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264', pix_fmt='yuv420p').run(overwrite_output=True) log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}") except ffmpeg.Error as e: log_and_print(f"Error extracting clip: {e}") transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript]) transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json") with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript_text, f, ensure_ascii=False, indent=4) log_and_print(f"Saved partial transcript to {transcript_path}") partial_transcript = [] current_stage = stage start_time = convert_time_to_seconds(segment["start_time"]) partial_transcript.append(segment) if current_stage is not None: end_time = convert_time_to_seconds(transcript[-1]["end_time"]) output_clip_filename = f"{base_filename}.{current_stage}.mp4" output_clip = os.path.join(clip_output_dir, output_clip_filename) if not os.path.exists(output_clip): try: ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264', pix_fmt='yuv420p').run(overwrite_output=True) log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}") except ffmpeg.Error as e: log_and_print(f"Error extracting clip: {e}") transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript]) transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json") with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript_text, f, ensure_ascii=False, indent=4) log_and_print(f"Saved partial transcript to {transcript_path}") def process_transcripts(input_dir, transcript_dir, stages): """Process each video file to generate transcripts and extract clips.""" video_files = [f for f in os.listdir(input_dir) if f.endswith('.mp4') or f.endswith('.MOV') or f.endswith('.mov')] for video_file in video_files: video_path = os.path.join(input_dir, video_file) transcript_path = os.path.join(transcript_dir, os.path.splitext(video_file)[0] ".json") if not os.path.exists(transcript_path): transcript = transcribe_video(video_path) with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript, f, ensure_ascii=False, indent=4) log_and_print(f"Created transcript for {video_path}") else: with open(transcript_path, 'r', encoding='utf-8') as f: transcript = json.load(f) extract_clips(video_path, transcript, stages) process_transcripts(root, transcript_dir, stages)
-----------EOF-----------
Creado por Tim del Medio Oeste de Canadá.
2024.
Este documento tiene licencia GPL.
Descargo de responsabilidad: Todos los recursos proporcionados provienen en parte de Internet. Si existe alguna infracción de sus derechos de autor u otros derechos e intereses, explique los motivos detallados y proporcione pruebas de los derechos de autor o derechos e intereses y luego envíelos al correo electrónico: [email protected]. Lo manejaremos por usted lo antes posible.
Copyright© 2022 湘ICP备2022001581号-3