Warum ist Matplotlib so langsam?
Bei der Bewertung von Python-Plotbibliotheken ist es wichtig, die Leistung zu berücksichtigen. Matplotlib, eine weit verbreitete Bibliothek, kann träge wirken und Fragen zur Beschleunigung oder Erforschung alternativer Optionen aufwerfen. Lassen Sie uns in das Problem eintauchen und mögliche Lösungen erkunden.
Das bereitgestellte Beispiel zeigt eine Handlung mit mehreren Unterhandlungen und Datenaktualisierungen. Bei Matplotlib umfasst dieser Prozess das Neuzeichnen aller Elemente, einschließlich Achsengrenzen und Teilstrichbeschriftungen, was zu einer langsamen Leistung führt.
Die Engpässe verstehen
Zwei Schlüsselfaktoren tragen zur Langsamkeit bei:
Optimierung mit Blitting
Um diese Engpässe zu beheben , erwägen Sie die Verwendung von Blitting. Beim Blitting werden nur bestimmte Teile der Figur aktualisiert, wodurch die Renderzeit verkürzt wird. Für eine effiziente Implementierung ist jedoch Backend-spezifischer Code erforderlich, der möglicherweise die Einbettung von Matplotlib-Plots in ein GUI-Toolkit erfordert.
GUI-Neutral Blitting
Ein GUI-neutrales Blitting Die Technik kann eine angemessene Leistung ohne Backend-Abhängigkeit liefern:
Beispielimplementierung:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 2*np.pi, 0.1)
y = np.sin(x)
fig, axes = plt.subplots(nrows=6)
styles = ['r-', 'g-', 'y-', 'm-', 'k-', 'c-']
def plot(ax, style):
return ax.plot(x, y, style, animated=True)[0]
lines = [plot(ax, style) for ax, style in zip(axes, styles)]
# Capture Background
backgrounds = [fig.canvas.copy_from_bbox(ax.bbox) for ax in axes]
for i in xrange(1, 2000):
for j, (line, ax, background) in enumerate(zip(lines, axes, backgrounds), start=1):
fig.canvas.restore_region(background)
line.set_ydata(np.sin(j*x i/10.0))
ax.draw_artist(line)
fig.canvas.blit(ax.bbox)
Animationsmodul
Neueste Matplotlib-Versionen enthalten ein Animationsmodul, das das Blitting vereinfacht:
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def animate(i):
for j, line in enumerate(lines, start=1):
line.set_ydata(np.sin(j*x i/10.0))
ani = animation.FuncAnimation(fig, animate, xrange(1, 200), interval=0, blit=True)
Haftungsausschluss: Alle bereitgestellten Ressourcen stammen teilweise aus dem Internet. Wenn eine Verletzung Ihres Urheberrechts oder anderer Rechte und Interessen vorliegt, erläutern Sie bitte die detaillierten Gründe und legen Sie einen Nachweis des Urheberrechts oder Ihrer Rechte und Interessen vor und senden Sie ihn dann an die E-Mail-Adresse: [email protected] Wir werden die Angelegenheit so schnell wie möglich für Sie erledigen.
Copyright© 2022 湘ICP备2022001581号-3