„Wenn ein Arbeiter seine Arbeit gut machen will, muss er zuerst seine Werkzeuge schärfen.“ – Konfuzius, „Die Gespräche des Konfuzius. Lu Linggong“
Titelseite > Programmierung > Verwendung von Polars mit NVIDIA GPU (CUDA), unter Windows mit WSL2

Verwendung von Polars mit NVIDIA GPU (CUDA), unter Windows mit WSL2

Veröffentlicht am 09.11.2024
Durchsuche:222

Using Polars with NVIDIA GPU (CUDA), on Windows using WSL2

In erster Linie lassen Sie mich wissen, wenn ich etwas übersehen habe oder etwas falsch gemacht habe oder wenn Sie Fragen haben

Schritte

WSL2

  1. Installieren Sie eine beliebige Linux-Distribution über den Windows Store (z. B. Ubuntu 22.04)
  2. Booten Sie es und erstellen Sie einen Benutzer
  3. Legen Sie WSL Version 2 als Standard fest, indem Sie diesen Befehl in der Eingabeaufforderung oder Powershell (auf Ihrem Windows-Gerät) ausführen.
wsl --set-default-version 2

Erstellen einer virtuellen Umgebung innerhalb von WSL2

1. Installieren Sie Python auf der WSL2-Instanz, indem Sie diese Befehle ausführen

sudo apt update
sudo apt install python3 python3-pip python3-venv

2. Erstellen Sie eine neue virtuelle Umgebung

python3 -m venv 

# examples
python3 -m venv myenv
# or
python3 -m venv gpu-env

Sie können diese virtuelle Umgebung im Stammordner erstellen. Danach können Sie einfach neue Ordner im Stammordner erstellen, die alle diese virtuelle Umgebung verwenden. Auf diese Weise müssen Sie nicht jedes Mal eine neue virtuelle Umgebung erstellen. (Die Installationszeit ist sehr lang und Sie möchten das wahrscheinlich nicht jedes Mal tun)

3. Aktivieren Sie die virtuelle Umgebung

source /bin/activate

# examples
source myenv/bin/activate
# or
source gpu-env/bin/activate

Wenn Sie die virtuelle Umgebung erfolgreich aktiviert haben, sollten Sie () auf der linken Seite des Terminals vor jeder Zeile sehen

Sie können es dann deaktivieren, indem Sie „deaktivieren“ eingeben, aber lassen Sie es vorerst für das Tutorial aktiviert

Installieren von Pip-Paketen in einer virtuellen Umgebung

pip install polars[gpu] pandas numpy tensorflow[and-cuda]

HINWEIS: Sie müssen sich in einer aktivierten virtuellen Umgebung befinden, um pip-install-Befehle ausführen zu können. Andernfalls erhalten Sie eine Fehlermeldung, die Sie auffordert, eine virtuelle Umgebung zu erstellen

Verwenden der virtuellen Umgebung in VS Code

Sie können VS Code öffnen, indem Sie code eingeben. im Terminal. Dadurch wird die VS-Code-Installation auf der WSL-Instanz installiert und geöffnet. Diese Installation verfügt nicht über alle Erweiterungen, die Sie in Ihrer Windows-Installation haben (z. B. Python, GitHub Copilot, Jupyter). Sie können sie (müssen) über die Registerkarte „Erweiterungen“ in VS Code erneut installieren.

Wählen Sie bei der Auswahl eines Interpreters anstelle der Python-Version mit einer Versionsnummer aus. Der von Ihnen benötigte Interpreter hat genau den gleichen Namen wie die virtuelle Umgebung und enthält dahinter eine Python-Versionsnummer in diesem Format

  • ✅ gpu-env (Python 3.11.2)
  • ❌ Python 3.11.2 /bin/python3
  • ❌ Python 3.11.2 /usr/bin/python3
Freigabeerklärung Dieser Artikel ist abgedruckt unter: https://dev.to/harmanpsingh/using-polars-with-nvidia-gpu-cuda-on-windows-using-wsl2-869?1 Bei Verstößen wenden Sie sich bitte an Study_golang@163 .com, um es zu löschen
Neuestes Tutorial Mehr>

Haftungsausschluss: Alle bereitgestellten Ressourcen stammen teilweise aus dem Internet. Wenn eine Verletzung Ihres Urheberrechts oder anderer Rechte und Interessen vorliegt, erläutern Sie bitte die detaillierten Gründe und legen Sie einen Nachweis des Urheberrechts oder Ihrer Rechte und Interessen vor und senden Sie ihn dann an die E-Mail-Adresse: [email protected] Wir werden die Angelegenheit so schnell wie möglich für Sie erledigen.

Copyright© 2022 湘ICP备2022001581号-3