„Wenn ein Arbeiter seine Arbeit gut machen will, muss er zuerst seine Werkzeuge schärfen.“ – Konfuzius, „Die Gespräche des Konfuzius. Lu Linggong“
Titelseite > Programmierung > Innerhalb von SQL-Joins

Innerhalb von SQL-Joins

Veröffentlicht am 07.11.2024
Durchsuche:921

Inside SQL Joins

SQL-Joins sind für die Abfrage von Datenbanken von grundlegender Bedeutung und ermöglichen es Benutzern, Daten aus mehreren Tabellen basierend auf angegebenen Bedingungen zu kombinieren. Verknüpfungen werden in zwei Haupttypen eingeteilt: logische Verknüpfungen und physische Verknüpfungen. Logische Verknüpfungen stellen die konzeptionelle Art und Weise dar, wie Daten aus Tabellen kombiniert werden, während sich physische Verknüpfungen auf die tatsächliche Implementierung dieser Verknüpfungen in Datenbanksystemen wie RDS (Relational Database Service) oder anderen SQL-Servern beziehen. Im heutigen Blogbeitrag werden wir die Geheimnisse von SQL-Joins lüften.

Lass uns einsteigen!

Logischer Join

Es gibt verschiedene Arten von logischen Verknüpfungen in SQL. Die beiden häufigsten sind Inner Join und Outer Join. Wir verwenden diese Joins, wenn wir Daten aus Tabellen abrufen müssen.

Physischer Beitritt

Physische Verknüpfungen werden in RDS implementiert. Der Benutzer schreibt die Abfrage mithilfe eines logischen Joins und RDS verwendet einen physischen Join, um die Join-Vorgänge auszuführen. Es gibt verschiedene Arten von physischen Verknüpfungen wie
1. Nested-Loop-Join
2. Hash-Join
3. Merge Join usw.

Nested-Loop-Join

Dies ist ein Join-Typ, bei dem eine kleinere Tabelle mit weniger Datensätzen ausgewählt und durch die andere Tabelle durchlaufen wird, bis eine Übereinstimmung gefunden wird. Diese Art der Verknüpfung ist auf MySQL-, Postgres- und sogar SQL-Servern verfügbar. Für große Tabellen ist es jedoch keine skalierbare Option. Es wird hauptsächlich in Fällen verwendet, in denen der Join-Operator keine Gleichheit verwendet.

Zum Beispiel Geodatenabfragen: Wenn Sie mit geografischen Daten arbeiten, möchten Sie möglicherweise Punkte finden, die sich in einer bestimmten Entfernung zu anderen Punkten befinden. Dies könnte den Vergleich des Abstands zwischen jeder Punktkombination beinhalten, was mit einem Nested-Loop-Join erreicht werden könnte.

SELECT *
FROM cities
JOIN landmarks ON distance(cities.location, landmarks.location) 



Hash-Beitritt

Hash-Join ist eine Methode zum Ausführen eines Joins mithilfe der Hash-Tabelle, um einen Übereinstimmungsdatensatz zu finden. Im Speicher wird eine Hash-Tabelle erstellt. Wenn eine große Datenmenge vorhanden ist und nicht genügend Speicher zum Speichern vorhanden ist, werden sie auf die Festplatte geschrieben. Der Hash-Join ist effizienter als der Nested-Loop-Join. Während der Ausführung erstellt RDS die speicherinterne Hash-Tabelle, in der die Zeilen aus der Join-Tabelle unter Verwendung des Join-Attributs als Schlüssel gespeichert werden. Nach der Ausführung beginnt der Server, die Zeilen aus der anderen Tabelle zu lesen und findet die entsprechende Zeile in der Hash-Tabelle. Diese Methode wird häufig verwendet, wenn der Join-Operator Gleichheit verwendet.

Angenommen, Sie haben eine Tabelle „Mitarbeiter“ mit Mitarbeiterdetails wie ID, Name und Abteilungs-ID sowie eine Tabelle „Abteilung“ mit Abteilungsdetails wie ID und Name. Sie möchten diese Tabellen verknüpfen, um die Abteilung zu ermitteln, zu der jeder Mitarbeiter gehört

SELECT *
FROM Employee
JOIN Department ON Employee.department_id = Department.department_id;

In diesem Beispiel basiert die Join-Bedingung auf der Gleichheit zwischen Spalten, sodass sie für einen Hash-Join geeignet ist. Diese Methode ist besonders beim Umgang mit großen Datensätzen effizient, da Datensätze mithilfe der Hash-Tabelle schnell abgeglichen werden können. Allerdings ist es wie bei jeder Join-Methode wichtig, die Größe der Datensätze und den verfügbaren Speicher zu berücksichtigen, um eine optimale Leistung sicherzustellen.

Zusammenführen

Merge Join ist eine Methode, die bei der Ausführung von SQL-Abfragen verwendet wird, wenn die Join-Bedingung einen Gleichheitsoperator verwendet und beide Seiten des Joins groß sind. Diese Technik basiert auf sortierten Dateneingaben. Wenn ein Index für die in der Join-Spalte verwendeten Ausdrücke vorhanden ist, kann dieser verwendet werden, um die sortierten Daten effizient zu erhalten. Wenn der Server die Daten jedoch explizit sortieren muss, ist es wichtig, die Indizes zu analysieren und eine Optimierung für eine verbesserte Leistung in Betracht zu ziehen.

Beispiel:
Stellen Sie sich ein Szenario mit einer „Sales“-Tabelle mit Verkaufstransaktionen, einschließlich Verkaufs-ID, Kunden-ID und Verkaufsbetrag, und einer „Customers“-Tabelle mit Kundendetails wie Kunden-ID, Name und Standort vor.

SELECT *
FROM Sales
JOIN Customers ON Sales.customer_id = Customers.customer_id;

In diesem Fall sind sowohl die Tabellen „Sales“ als auch „Customers“ umfangreich und die Join-Bedingung basiert auf der Gleichheit der Spalte „customer_id“. Für einen effizienten Merge-Join müssen beide Eingabetabellen nach der Join-Spalte („customer_id“) sortiert werden. Wenn für die Spalte „customer_id“ kein Index vorhanden ist, muss der Server möglicherweise zusätzliche Sortiervorgänge durchführen, was sich auf die Leistung auswirken kann.

Um den Merge-Join zu optimieren, empfiehlt es sich, Indizes für die Spalte „customer_id“ in beiden Tabellen zu erstellen oder zu ändern. Die Gewährleistung einer ordnungsgemäßen Wartung und Optimierung dieser Indizes kann zu erheblichen Verbesserungen der Abfrageleistung führen, insbesondere bei Abfragen, die häufig Verknüpfungen auf der Grundlage der Spalte „customer_id“ beinhalten.

Durch die effektive Nutzung von Indizes und die Sicherstellung sortierter Dateneingaben können Merge-Joins Verknüpfungen zwischen großen Tabellen mit gleichheitsbasierten Join-Bedingungen effizient verarbeiten und so zu einer verbesserten Abfrageleistung und Gesamtsystemeffizienz beitragen.

Aspekt Nested-Loop-Join Hash-Join Beitritt zusammenführen
Beitrittsbedingung Ungleichheit Gleichwertigkeit Gleichwertigkeit
Eingabedatengröße Klein bis Mittel Mittel bis Groß Groß
Datensortierung Nicht erforderlich Nicht erforderlich Erforderlich
Speichernutzung Niedrig Mittel bis Hoch Mittel bis Hoch
Indexauslastung Kein Hauptanliegen Vorteilhaft Beruht auf Indizes
Leistung (große Datensätze) Langsamer Effizient Effizient
Skalierbarkeit Weniger skalierbar Skalierbar Skalierbar
Typische Anwendungsfälle Kleine bis mittelgroße Tische Große Tabellen mit Gleichheitsverknüpfungen Große Tabellen mit Gleichheitsverknüpfungen
Freigabeerklärung Dieser Artikel ist abgedruckt unter: https://dev.to/balajisasi/inside-sql-joins-5h6b?1 Bei Verstößen wenden Sie sich bitte an [email protected], um ihn zu löschen
Neuestes Tutorial Mehr>

Haftungsausschluss: Alle bereitgestellten Ressourcen stammen teilweise aus dem Internet. Wenn eine Verletzung Ihres Urheberrechts oder anderer Rechte und Interessen vorliegt, erläutern Sie bitte die detaillierten Gründe und legen Sie einen Nachweis des Urheberrechts oder Ihrer Rechte und Interessen vor und senden Sie ihn dann an die E-Mail-Adresse: [email protected] Wir werden die Angelegenheit so schnell wie möglich für Sie erledigen.

Copyright© 2022 湘ICP备2022001581号-3