Tive uma necessidade em um cliente de reduzir o custo de processos que rodavam no Databricks. Uma das features que o Databricks era responsável era de coletar os arquivos de vários SFTP, descompactá-los e colocá-los no Data Lake.
A automação de fluxos de trabalho de dados é um componente crucial na engenharia de dados moderna. Neste artigo, exploraremos como criar uma função AWS Lambda usando GitLab CI/CD e Terraform, que permite a uma aplicação em Go conectar-se a um servidor SFTP, coletar arquivos, armazená-los no Amazon S3 e, por fim, acionar um job no Databricks. Este processo end-to-end é essencial para sistemas que dependem de integração e automação de dados eficientes.
Comece criando uma aplicação em Go que se conectará ao servidor SFTP para coletar arquivos. Utilize pacotes como github.com/pkg/sftp para estabelecer a conexão SFTP e github.com/aws/aws-sdk-go para interagir com o serviço S3 da AWS.
package main import ( "fmt" "log" "os" "path/filepath" "github.com/pkg/sftp" "golang.org/x/crypto/ssh" "github.com/aws/aws-sdk-go/aws" "github.com/aws/aws-sdk-go/aws/session" "github.com/aws/aws-sdk-go/service/s3/s3manager" ) func main() { // Configuração do cliente SFTP user := "seu_usuario_sftp" pass := "sua_senha_sftp" host := "endereco_sftp:22" config := &ssh.ClientConfig{ User: user, Auth: []ssh.AuthMethod{ ssh.Password(pass), }, HostKeyCallback: ssh.InsecureIgnoreHostKey(), } // Conectar ao servidor SFTP conn, err := ssh.Dial("tcp", host, config) if err != nil { log.Fatal(err) } client, err := sftp.NewClient(conn) if err != nil { log.Fatal(err) } defer client.Close() // Baixar arquivos do SFTP remoteFilePath := "/path/to/remote/file" localDir := "/path/to/local/dir" localFilePath := filepath.Join(localDir, filepath.Base(remoteFilePath)) dstFile, err := os.Create(localFilePath) if err != nil { log.Fatal(err) } defer dstFile.Close() srcFile, err := client.Open(remoteFilePath) if err != nil { log.Fatal(err) } defer srcFile.Close() if _, err := srcFile.WriteTo(dstFile); err != nil { log.Fatal(err) } fmt.Println("Arquivo baixado com sucesso:", localFilePath) // Configuração do cliente S3 sess := session.Must(session.NewSession(&aws.Config{ Region: aws.String("us-west-2"), })) uploader := s3manager.NewUploader(sess) // Carregar arquivo para o S3 file, err := os.Open(localFilePath) if err != nil { log.Fatal(err) } defer file.Close() _, err = uploader.Upload(&s3manager.UploadInput{ Bucket: aws.String("seu-bucket-s3"), Key: aws.String(filepath.Base(localFilePath)), Body: file, }) if err != nil { log.Fatal("Falha ao carregar arquivo para o S3:", err) } fmt.Println("Arquivo carregado com sucesso no S3") }
O Terraform será usado para provisionar a função Lambda e os recursos necessários na AWS. Crie um arquivo main.tf com a configuração necessária para criar a função Lambda, as políticas de IAM e os buckets do S3.
provider "aws" { region = "us-east-1" } resource "aws_iam_role" "lambda_execution_role" { name = "lambda_execution_role" assume_role_policy = jsonencode({ Version = "2012-10-17", Statement = [ { Action = "sts:AssumeRole", Effect = "Allow", Principal = { Service = "lambda.amazonaws.com" }, }, ] }) } resource "aws_iam_policy" "lambda_policy" { name = "lambda_policy" description = "A policy that allows a lambda function to access S3 and SFTP resources" policy = jsonencode({ Version = "2012-10-17", Statement = [ { Action = [ "s3:ListBucket", "s3:GetObject", "s3:PutObject", ], Effect = "Allow", Resource = [ "arn:aws:s3:::seu-bucket-s3", "arn:aws:s3:::seu-bucket-s3/*", ], }, ] }) } resource "aws_iam_role_policy_attachment" "lambda_policy_attachment" { role = aws_iam_role.lambda_execution_role.name policy_arn = aws_iam_policy.lambda_policy.arn } resource "aws_lambda_function" "sftp_lambda" { function_name = "sftp_lambda_function" s3_bucket = "seu-bucket-s3-com-codigo-lambda" s3_key = "sftp-lambda.zip" handler = "main" runtime = "go1.x" role = aws_iam_role.lambda_execution_role.arn environment { variables = { SFTP_HOST = "endereco_sftp", SFTP_USER = "seu_usuario_sftp", SFTP_PASSWORD = "sua_senha_sftp", S3_BUCKET = "seu-bucket-s3", } } } resource "aws_s3_bucket" "s3_bucket" { bucket = "seu-bucket-s3" acl = "private" }
No GitLab, defina o pipeline CI/CD no arquivo .gitlab-ci.yml. Este pipeline deve incluir etapas para testar a aplicação Go, executar o Terraform para provisionar a infraestrutura e uma etapa para limpeza, se necessário.
stages: - test - build - deploy variables: S3_BUCKET: "seu-bucket-s3" AWS_DEFAULT_REGION: "us-east-1" TF_VERSION: "1.0.0" before_script: - 'which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )' - eval $(ssh-agent -s) - echo "$PRIVATE_KEY" | tr -d '\r' | ssh-add - - mkdir -p ~/.ssh - chmod 700 ~/.ssh - ssh-keyscan -H 'endereco_sftp' >> ~/.ssh/known_hosts test: stage: test image: golang:1.18 script: - go test -v ./... build: stage: build image: golang:1.18 script: - go build -o myapp - zip -r sftp-lambda.zip myapp artifacts: paths: - sftp-lambda.zip only: - master deploy: stage: deploy image: hashicorp/terraform:$TF_VERSION script: - terraform init - terraform apply -auto-approve only: - master environment: name: production
Após o upload dos arquivos para o S3, a função Lambda deve acionar um job no Databricks. Isso pode ser feito utilizando a API do Databricks para iniciar jobs existentes.
package main import ( "bytes" "encoding/json" "fmt" "net/http" ) // Estrutura para a requisição de iniciar um job no Databricks type DatabricksJobRequest struct { JobID int `json:"job_id"` } // Função para acionar um job no Databricks func triggerDatabricksJob(databricksInstance string, token string, jobID int) error { url := fmt.Sprintf("https://%s/api/2.0/jobs/run-now", databricksInstance) requestBody, _ := json.Marshal(DatabricksJobRequest{JobID: jobID}) req, err := http.NewRequest("POST", url, bytes.NewBuffer(requestBody)) if err != nil { return err } req.Header.Set("Content-Type", "application/json") req.Header.Set("Authorization", fmt.Sprintf("Bearer %s", token)) client := &http.Client{} resp, err := client.Do(req) if err != nil { return err } defer resp.Body.Close() if resp.StatusCode != http.StatusOK { return fmt.Errorf("Failed to trigger Databricks job, status code: %d", resp.StatusCode) } return nil } func main() { // ... (código existente para conectar ao SFTP e carregar no S3) // Substitua pelos seus valores reais databricksInstance := "your-databricks-instance" databricksToken := "your-databricks-token" databricksJobID := 123 // ID do job que você deseja acionar // Acionar o job no Databricks após o upload para o S3 err := triggerDatabricksJob(databricksInstance, databricksToken, databricksJobID) if err != nil { log.Fatal("Erro ao acionar o job do Databricks:", err) } fmt.Println("Job do Databricks acionado com sucesso") }
Faça o push do código para o repositório GitLab para que o pipeline seja executado. Verifique se todos os passos são concluídos com sucesso e se a função Lambda está operacional e interagindo corretamente com o S3 e o Databricks.
Uma vez que você tenha o código completo e o arquivo .gitlab-ci.yml configurado, você pode executar o pipeline seguindo estes passos:
git add . git commit -m "Adiciona função Lambda para integração SFTP, S3 e Databricks" git push origin master
git add . git commit -m "Adiciona função Lambda para integração SFTP, S3 e Databricks" git push origin master ´´´
Lembre-se de que você precisará configurar as variáveis de ambiente no GitLab CI/CD para armazenar informações sensíveis, como tokens de acesso e chaves privadas. Isso pode ser feito na seção ‘Settings’ > ‘CI / CD’ > ‘Variables’ do seu projeto GitLab.
Além disso, certifique-se de que o token do Databricks tenha as permissões necessárias para acionar jobs e que o job exista com o ID fornecido.
A automação de tarefas de engenharia de dados pode ser significativamente simplificada com o uso de ferramentas como GitLab CI/CD, Terraform e AWS Lambda. Ao seguir os passos descritos neste artigo, você pode criar um sistema robusto que automatiza a coleta e integração de dados entre SFTP, S3 e Databricks, tudo isso com a eficiência e a simplicidade da linguagem Go. Com essa abordagem, você estará bem equipado para lidar com os desafios de integração de dados em escala.
Meus contatos:
LinkedIn - Airton Lira Junior
iMasters - Airton Lira Junior
Haftungsausschluss: Alle bereitgestellten Ressourcen stammen teilweise aus dem Internet. Wenn eine Verletzung Ihres Urheberrechts oder anderer Rechte und Interessen vorliegt, erläutern Sie bitte die detaillierten Gründe und legen Sie einen Nachweis des Urheberrechts oder Ihrer Rechte und Interessen vor und senden Sie ihn dann an die E-Mail-Adresse: [email protected] Wir werden die Angelegenheit so schnell wie möglich für Sie erledigen.
Copyright© 2022 湘ICP备2022001581号-3