Sind For-Schleifen in Pandas wirklich schlecht? Wann sollte es mich interessieren?
Einführung
Während Pandas für seine vektorisierten Operationen bekannt ist, die die Berechnung beschleunigen, enthalten viele Codebeispiele immer noch Schleifen. Während in der Dokumentation empfohlen wird, die Iteration über Daten zu vermeiden, werden in diesem Beitrag Szenarien untersucht, in denen For-Schleifen eine bessere Leistung bieten als vektorisierte Ansätze.
Iteration vs. Vektorisierung bei kleinen Datenmengen
For Bei kleinen Datenmengen können for-Schleifen vektorisierte Funktionen aufgrund des Mehraufwands übertreffen, der mit der Verarbeitung der Achsenausrichtung, gemischten Datentypen und fehlenden Daten verbunden ist. Listenverständnisse, die optimierte iterative Mechanismen verwenden, sind sogar noch schneller.
Operationen mit gemischten/Objekt-D-Typen
String-basierter Vergleich:
Zugriff auf Wörterbuch-/Listenelemente:
Regex-Operationen
Wann for-Schleifen in Betracht gezogen werden sollten
Für kleine Zeilen von DataFrames:
Gemischt Datentypen:
Reguläre Ausdrücke:
Schlussfolgerung
Während vektorisierte Funktionen Einfachheit und Lesbarkeit bieten, ist es wichtig, schleifenbasierte Lösungen in bestimmten Szenarien in Betracht zu ziehen. Es wird empfohlen, sorgfältige Tests durchzuführen, um den für Ihre Leistungsanforderungen am besten geeigneten Ansatz zu ermitteln.
Haftungsausschluss: Alle bereitgestellten Ressourcen stammen teilweise aus dem Internet. Wenn eine Verletzung Ihres Urheberrechts oder anderer Rechte und Interessen vorliegt, erläutern Sie bitte die detaillierten Gründe und legen Sie einen Nachweis des Urheberrechts oder Ihrer Rechte und Interessen vor und senden Sie ihn dann an die E-Mail-Adresse: [email protected] Wir werden die Angelegenheit so schnell wie möglich für Sie erledigen.
Copyright© 2022 湘ICP备2022001581号-3