JAVA-Tutorial
Java-Datei
Das Problem, den Median zweier sortierter Arrays zu finden, ist eine klassische Frage in Codierungsinterviews. Die Herausforderung besteht darin, den Median effizient mit einer Zeitkomplexität von O(log(min(m, n))) zu finden, wobei m und n die Größen der beiden Arrays sind. In diesem Artikel gehen wir eine Java-Lösung durch, die die binäre Suche verwendet, um diese Effizienz zu erreichen.
Ermitteln Sie anhand zweier sortierter Arrays nums1 und nums2 den Median der beiden sortierten Arrays. Die gesamte Laufzeitkomplexität sollte O(log(min(m, n))) betragen, wobei m und n die Größen der beiden Arrays sind.
Um dieses Problem zu lösen, verwenden wir einen binären Suchansatz für das kleinere der beiden Arrays. Das Ziel besteht darin, beide Arrays so zu unterteilen, dass die linke Hälfte alle Elemente enthält, die kleiner oder gleich den Elementen in der rechten Hälfte sind. Hier ist eine Schritt-für-Schritt-Erklärung:
Hier ist eine detaillierte Java-Implementierung der Lösung:
public class MedianOfTwoSortedArrays { public double findMedianSortedArrays(int[] nums1, int[] nums2) { // Ensure nums1 is the smaller array if (nums1.length > nums2.length) { int[] temp = nums1; nums1 = nums2; nums2 = temp; } int x = nums1.length; int y = nums2.length; int low = 0, high = x; while (low minY) { high = partitionX - 1; } else { low = partitionX 1; } } throw new IllegalArgumentException("Input arrays are not sorted"); } public static void main(String[] args) { MedianOfTwoSortedArrays solution = new MedianOfTwoSortedArrays(); int[] nums1 = {1, 3}; int[] nums2 = {2}; System.out.println("Median: " solution.findMedianSortedArrays(nums1, nums2)); // Output: 2.0 int[] nums1_2 = {1, 2}; int[] nums2_2 = {3, 4}; System.out.println("Median: " solution.findMedianSortedArrays(nums1_2, nums2_2)); // Output: 2.5 } }
Dieser binäre Suchansatz bietet eine effiziente Lösung zum Ermitteln des Medians zweier sortierter Arrays. Durch die Nutzung der binären Suche im kleineren Array erreicht die Lösung eine Zeitkomplexität von O(log(min(m, n))), wodurch sie für große Eingabearrays geeignet ist.
Haftungsausschluss: Alle bereitgestellten Ressourcen stammen teilweise aus dem Internet. Wenn eine Verletzung Ihres Urheberrechts oder anderer Rechte und Interessen vorliegt, erläutern Sie bitte die detaillierten Gründe und legen Sie einen Nachweis des Urheberrechts oder Ihrer Rechte und Interessen vor und senden Sie ihn dann an die E-Mail-Adresse: [email protected] Wir werden die Angelegenheit so schnell wie möglich für Sie erledigen.
Copyright© 2022 湘ICP备2022001581号-3