"If a worker wants to do his job well, he must first sharpen his tools." - Confucius, "The Analects of Confucius. Lu Linggong"
Front page > Programming > Topic Modeling with Topc: Dreyfus, AI, and Wordclouds

Topic Modeling with Topc: Dreyfus, AI, and Wordclouds

Published on 2024-07-30
Browse:922

Extracting Insights from PDFs with Python: A Comprehensive Guide

This script demonstrates a powerful workflow for processing PDFs, extracting text, tokenizing sentences, and performing topic modeling with visualization, tailored for efficient and insightful analysis.

Libraries Overview

  • os: Provides functions to interact with the operating system.
  • matplotlib.pyplot: Used for creating static, animated, and interactive visualizations in Python.
  • nltk: Natural Language Toolkit, a suite of libraries and programs for natural language processing.
  • pandas: Data manipulation and analysis library.
  • pdftotext: Library for converting PDF documents to plain text.
  • re: Provides regular expression matching operations.
  • seaborn: Statistical data visualization library based on matplotlib.
  • nltk.tokenize.sent_tokenize: NLTK function to tokenize a string into sentences.
  • top2vec: Library for topic modeling and semantic search.
  • wordcloud: Library for creating word clouds from text data.

Initial Setup

Import Modules

import os
import matplotlib.pyplot as plt
import nltk
import pandas as pd
import pdftotext
import re
import seaborn as sns
from nltk.tokenize import sent_tokenize
from top2vec import Top2Vec
from wordcloud import WordCloud
from cleantext import clean

Next, ensure the punkt tokenizer is downloaded:

nltk.download('punkt')

Text Normalization

def normalize_text(text):
    """Normalize text by removing special characters and extra spaces,
    and applying various other cleaning options."""

    # Apply the clean function with specified parameters
    cleaned_text = clean(
        text,
        fix_unicode=True,  # fix various unicode errors
        to_ascii=True,  # transliterate to closest ASCII representation
        lower=True,  # lowercase text
        no_line_breaks=False,  # fully strip line breaks as opposed to only normalizing them
        no_urls=True,  # replace all URLs with a special token
        no_emails=True,  # replace all email addresses with a special token
        no_phone_numbers=True,  # replace all phone numbers with a special token
        no_numbers=True,  # replace all numbers with a special token
        no_digits=True,  # replace all digits with a special token
        no_currency_symbols=True,  # replace all currency symbols with a special token
        no_punct=False,  # remove punctuations
        lang="en",  # set to 'de' for German special handling
    )

    # Further clean the text by removing any remaining special characters except word characters, whitespace, and periods/commas
    cleaned_text = re.sub(r"[^\w\s.,]", "", cleaned_text)
    # Replace multiple whitespace characters with a single space and strip leading/trailing spaces
    cleaned_text = re.sub(r"\s ", " ", cleaned_text).strip()

    return cleaned_text

PDF Text Extraction

def extract_text_from_pdf(pdf_path):
    with open(pdf_path, "rb") as f:
        pdf = pdftotext.PDF(f)
    all_text = "\n\n".join(pdf)
    return normalize_text(all_text)

Sentence Tokenization

def split_into_sentences(text):
    return sent_tokenize(text)

Processing Multiple Files

def process_files(file_paths):
    authors, titles, all_sentences = [], [], []
    for file_path in file_paths:
        file_name = os.path.basename(file_path)
        parts = file_name.split(" - ", 2)
        if len(parts) != 3 or not file_name.endswith(".pdf"):
            print(f"Skipping file with incorrect format: {file_name}")
            continue

        year, author, title = parts
        author, title = author.strip(), title.replace(".pdf", "").strip()

        try:
            text = extract_text_from_pdf(file_path)
        except Exception as e:
            print(f"Error extracting text from {file_name}: {e}")
            continue

        sentences = split_into_sentences(text)
        authors.append(author)
        titles.append(title)
        all_sentences.extend(sentences)
        print(f"Number of sentences for {file_name}: {len(sentences)}")

    return authors, titles, all_sentences

Saving Data to CSV

def save_data_to_csv(authors, titles, file_paths, output_file):
    texts = []
    for fp in file_paths:
        try:
            text = extract_text_from_pdf(fp)
            sentences = split_into_sentences(text)
            texts.append(" ".join(sentences))
        except Exception as e:
            print(f"Error processing file {fp}: {e}")
            texts.append("")

    data = pd.DataFrame({
        "Author": authors,
        "Title": titles,
        "Text": texts
    })
    data.to_csv(output_file, index=False, quoting=1, encoding='utf-8')
    print(f"Data has been written to {output_file}")

Loading Stopwords

def load_stopwords(filepath):
    with open(filepath, "r") as f:
        stopwords = f.read().splitlines()
    additional_stopwords = ["able", "according", "act", "actually", "after", "again", "age", "agree", "al", "all", "already", "also", "am", "among", "an", "and", "another", "any", "appropriate", "are", "argue", "as", "at", "avoid", "based", "basic", "basis", "be", "been", "begin", "best", "book", "both", "build", "but", "by", "call", "can", "cant", "case", "cases", "claim", "claims", "class", "clear", "clearly", "cope", "could", "course", "data", "de", "deal", "dec", "did", "do", "doesnt", "done", "dont", "each", "early", "ed", "either", "end", "etc", "even", "ever", "every", "far", "feel", "few", "field", "find", "first", "follow", "follows", "for", "found", "free", "fri", "fully", "get", "had", "hand", "has", "have", "he", "help", "her", "here", "him", "his", "how", "however", "httpsabout", "ibid", "if", "im", "in", "is", "it", "its", "jstor", "june", "large", "lead", "least", "less", "like", "long", "look", "man", "many", "may", "me", "money", "more", "most", "move", "moves", "my", "neither", "net", "never", "new", "no", "nor", "not", "notes", "notion", "now", "of", "on", "once", "one", "ones", "only", "open", "or", "order", "orgterms", "other", "our", "out", "own", "paper", "past", "place", "plan", "play", "point", "pp", "precisely", "press", "put", "rather", "real", "require", "right", "risk", "role", "said", "same", "says", "search", "second", "see", "seem", "seems", "seen", "sees", "set", "shall", "she", "should", "show", "shows", "since", "so", "step", "strange", "style", "such", "suggests", "talk", "tell", "tells", "term", "terms", "than", "that", "the", "their", "them", "then", "there", "therefore", "these", "they", "this", "those", "three", "thus", "to", "todes", "together", "too", "tradition", "trans", "true", "try", "trying", "turn", "turns", "two", "up", "us", "use", "used", "uses", "using", "very", "view", "vol", "was", "way", "ways", "we", "web", "well", "were", "what", "when", "whether", "which", "who", "why", "with", "within", "works", "would", "years", "york", "you", "your", "suggests", "without"]
    stopwords.extend(additional_stopwords)
    return set(stopwords)

Filtering Stopwords from Topics

def filter_stopwords_from_topics(topic_words, stopwords):
    filtered_topics = []
    for words in topic_words:
        filtered_topics.append([word for word in words if word.lower() not in stopwords])
    return filtered_topics

Word Cloud Generation

def generate_wordcloud(topic_words, topic_num, palette='inferno'):
    colors = sns.color_palette(palette, n_colors=256).as_hex()
    def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
        return colors[random_state.randint(0, len(colors) - 1)]

    wordcloud = WordCloud(width=800, height=400, background_color='black', color_func=color_func).generate(' '.join(topic_words))
    plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    plt.title(f'Topic {topic_num} Word Cloud')
    plt.show()

Main Execution

file_paths = [f"/home/roomal/Desktop/Dreyfus-Project/Dreyfus/{fname}" for fname in os.listdir("/home/roomal/Desktop/Dreyfus-Project/Dreyfus/") if fname.endswith(".pdf")]

authors, titles, all_sentences = process_files(file_paths)

output_file = "/home/roomal/Desktop/Dreyfus-Project/Dreyfus_Papers.csv"
save_data_to_csv(authors, titles, file_paths, output_file)

stopwords_filepath = "/home/roomal/Documents/Lists/stopwords.txt"
stopwords = load_stopwords(stopwords_filepath)

try:
    topic_model = Top2Vec(
        all_sentences,
        embedding_model="distiluse-base-multilingual-cased",
        speed="deep-learn",
        workers=6
    )
    print("Top2Vec model created successfully.")
except ValueError as e:
    print(f"Error initializing Top2Vec: {e}")
except Exception as e:
    print(f"Unexpected error: {e}")

num_topics = topic_model.get_num_topics()
topic_words, word_scores, topic_nums = topic_model.get_topics(num_topics)
filtered_topic_words = filter_stopwords_from_topics(topic_words, stopwords)

for i, words in enumerate(filtered_topic_words):
    print(f"Topic {i}: {', '.join(words)}")

keywords = ["heidegger"]
topic_words, word_scores, topic_scores, topic_nums = topic_model.search_topics(keywords=keywords, num_topics=num_topics)
filtered

_search_topic_words = filter_stopwords_from_topics(topic_words, stopwords)

for i, words in enumerate(filtered_search_topic_words):
    generate_wordcloud(words, topic_nums[i])

for i in range(reduced_num_topics):
    topic_words = topic_model.topic_words_reduced[i]
    filtered_words = [word for word in topic_words if word.lower() not in stopwords]
    print(f"Reduced Topic {i}: {', '.join(filtered_words)}")
    generate_wordcloud(filtered_words, i)

Topic Wordcloud

Reduce the number of topics

reduced_num_topics = 5
topic_mapping = topic_model.hierarchical_topic_reduction(num_topics=reduced_num_topics)

# Print reduced topics and generate word clouds
for i in range(reduced_num_topics):
    topic_words = topic_model.topic_words_reduced[i]
    filtered_words = [word for word in topic_words if word.lower() not in stopwords]
    print(f"Reduced Topic {i}: {', '.join(filtered_words)}")
    generate_wordcloud(filtered_words, i)

Hierarchical Topic Reduction Wordcloud

Release Statement This article is reproduced at: https://dev.to/roomals/topic-modeling-with-top2vec-dreyfus-ai-and-wordclouds-1ggl?1 If there is any infringement, please contact [email protected] to delete it
Latest tutorial More>

Disclaimer: All resources provided are partly from the Internet. If there is any infringement of your copyright or other rights and interests, please explain the detailed reasons and provide proof of copyright or rights and interests and then send it to the email: [email protected] We will handle it for you as soon as possible.

Copyright© 2022 湘ICP备2022001581号-3