Sorting refers to the process of arranging data in a specific order, typically in ascending or descending order, based on a linear relationship among the data items.
Sorting is crucial when working with structured data because it allows for efficient data retrieval, simplifies data analysis, and enhances overall data management.
This post covers the following sorting algorithms: Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, and Quick Sort.
Bubble Sort repeatedly steps through the array, comparing adjacent elements and swapping them if they are in the wrong order. This process continues until the array is sorted, with larger elements "bubbling" to the end.
Step 1: Begin
Step 2: i = 0
Step 3: if i
Step 4: j = 0
Step 5: if j
Step 6: if array[j] > array[j 1], goto Step 7; else goto Step 8
Step 7: Swap array[j] and array[j 1]
Step 8: increment j; goto Step 5
Step 9: increment i; goto Step 3
Step 10: End
def bubble_sort(arr): print("Array Before Sorting: ", end='') print(arr) for i in range(len(arr)): for j in range(len(arr)-i-1): if arr[j] > arr[j 1]: arr[j], arr[j 1] = arr[j 1], arr[j] print("Array After Sorting: ", end='') print(arr) # Main bubble_sort([7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6])
Best Case : O(n)
Average Case : O(n^2)
Worst Case : O(n^2)
Selection Sort finds the smallest value in the unsorted portion of the array and places it at the beginning of that portion.
Step 1 : Begin
Step 2 : i = 0
Step 3 : if i
Step 4 : minimum_value = i; j = i 1
Step 5 : if j
Step 6 : if array[minimum_value] > array[j], goto Step 7; else goto Step 8
Step 7 : minimum_value = j
Step 8 : increment j; goto Step 5
Step 9 : swap array[minimum_value] and array[i]
Step 10 : increment i; goto Step 3
Step 11 : End
def selection_sort(arr): print("Array Before Sorting: ", end='') print(arr) for i in range(len(arr) - 1): min_val = i for j in range(i 1, len(arr)): if arr[j]Time Complexity
Best Case : O(n^2)
Average Case : O(n^2)
Worst Case : O(n^2)Insertion Sort
Insertion Sort builds the sorted array one element at a time by taking each element from the unsorted portion and inserting it into the correct position in the sorted portion.
Algorithm
Step 1: Begin
Step 2: i = 1
Step 3: if i Step 4: key = arr[i]
Step 5: j = i - 1
Step 6: if j >= 0 and arr[j] > key, goto Step 7; else goto Step 10
Step 7: arr[j 1] = arr[j]
Step 8: decrement j by 1
Step 9: goto Step 6
Step 10: arr[j 1] = key
Step 11: increment i by 1; goto Step 3
Step 12: EndCode
def insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j 1] = arr[j] j -= 1 arr[j 1] = key # Main arr = [7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6] print("Array Before Sorting:", arr) insertion_sort(arr) print("Array After Sorting:", arr)Time Complexity
Best Case : O(n)
Average Case : O(n^2)
Worst Case : O(n^2)Merge Sort
Merge Sort is a divide-and-conquer algorithm that recursively divides the array into smaller sub-arrays, sorts them, and then merges them back together.
Algorithm
Merge Sort Algorithm
Step 1: Begin
Step 2: If length(array) Step 3: mid_point = length(array) // 2
Step 4: left_half = array[:mid_point]
Step 5: right_half = array[mid_point:]
Step 6: sorted_left = merge_sort(left_half)
Step 7: sorted_right = merge_sort(right_half)
Step 8: return merge(sorted_left, sorted_right)
Step 9: EndMerge Function
Step 1: Begin
Step 2: sorted_merge = []
Step 3: l = 0, r = 0
Step 4: if l Step 5: if left[l] Step 6: add left[l] to sorted_merge; increment l by 1
Step 7: add right[r] to sorted_merge; increment r by 1
Step 8: goto Step 4
Step 9: if l Step 10: add left[l] to sorted_merge; increment l by 1
Step 11: goto Step 9
Step 12: if r Step 13: add right[r] to sorted_merge; increment r by 1
Step 14: goto Step 12
Step 15: Return sorted_merge
Step 16: EndCode
def merge(left, right): sorted_merge = [] l = r = 0 while lTime Complexity
Best Case : O(n log n)
Average Case : O(n log n)
Worst Case : O(n log n)Quick Sort
Quick Sort is an efficient, in-place sorting algorithm that uses a divide-and-conquer approach. It selects a pivot element and partitions the array around the pivot so that elements less than the pivot are on its left and elements greater than the pivot are on its right. This process is then recursively applied to the sub-arrays.
Algorithm
Quick Sort
Step 1: Begin
Step 2: If low Step 3: pivot_index = partition(arr, low, high)
Step 4: quicksort(arr, low, pivot_index - 1)
Step 5: quicksort(arr, pivot_index 1, high)
Step 6: EndPartition Function
Step 1: Begin
Step 2: pivot = arr[high]
Step 3: left = low, right = high - 1
Step 4: if left Step 5: if arr[left] > pivot and arr[right] Step 6: if arr[left] Step 7: if arr[right] >= pivot, decrement right
Step 8: goto Step 4
Step 9: swap arr[left] and arr[high]
Step 10: return left
Step 11: EndCode
def partition(arr, low, high): pivot = arr[high] left = low right = high - 1 while left pivot and arr[right] = pivot: right -= 1 arr[left], arr[high] = arr[high], arr[left] return left def quicksort(arr, low, high): if lowTime Complexity
Best Case : O(n log n)
Average Case : O(n log n)
Worst Case : O(n^2)
Disclaimer: All resources provided are partly from the Internet. If there is any infringement of your copyright or other rights and interests, please explain the detailed reasons and provide proof of copyright or rights and interests and then send it to the email: [email protected] We will handle it for you as soon as possible.
Copyright© 2022 湘ICP备2022001581号-3