My React journey began four years ago with functional components and Hooks. Then came 'Siswe, a fellow participant in the bootcamp and our resident class component enthusiast. While the rest of us were collaborating on team projects with functional components, 'Siswe clung to class components with an unwavering loyalty.
Think of them as Lego bricks – you can combine them in various ways to create complex structures. They are independent and reusable pieces of code that encapsulate UI and logic.
Reusing a component within another component typically looks like this:
import MyComponent from './MyComponent'; function ParentComponent() { return (); }
Class Components and Functional Components are the two primary ways to create components in React.
import React, { Component } from 'react'; class Counter extends Component { constructor(props) { super(props); this.state = { count: 0 }; } handleClick = () => { this.setState({ count: this.state.count 1 }); }; render() { return (); } } export default Counter;You clicked {this.state.count} times
This is a class component, created using JavaScript classes that extend the React.Component class.
import React, { useState } from 'react'; function Counter() { const [count, setCount] = useState(0); const handleClick = () => { setCount(count 1); }; return (); } export default Counter;You clicked {count} times
This on the other hand is a functional component, written as a simple JavaScript function.
Class components manage their own internal state using this.state. This is typically initialized in the constructor, accessed using this.state object, and updated using the this.setState method, as seen in the code block above.
Functional components were initially stateless. But with the introduction of Hooks, they gained the ability to manage state and lifecycle logic. Utilizing the useState hook for managing state, it returns a pair of values: the current state and a function to update it, as seen above. This is sufficient for simple state management. For more complex state logic involving multiple sub-values, or when the next state depends on the previous one, you want to use useReducer.
For example:
import React, { useReducer } from 'react'; const initialState = { count: 0, step: 1, }; const reducer = (state, action) => { switch (action.type) { case 'increment': return { ...state, count: state.count state.step }; case 'decrement': return { ...state, count: state.count - state.step }; case 'setStep': return { ...state, step: action.payload }; default: throw new Error(); } }; function Counter() { const [state, dispatch] = useReducer(reducer, initialState); const increment = () => dispatch({ type: 'increment' }); const decrement = () => dispatch({ type: 'decrement' }); const setStep = (newStep) => dispatch({ type: 'setStep', payload: newStep }); return (); } export default Counter;Count: {state.count}
Step: {state.step}
setStep(Number(e.target.value))} />
Here, useReducer is managing multiple state values and complex update logic in a structured and maintainable way. Hooks are exclusively for functional components.
Never directly modify or mutate the state object, regardless of the component type. Instead, create a new object with the updated values. This approach helps React efficiently track changes and optimize re-renders.
Functional component example:
import React, { useState } from 'react'; function UserProfile() { const [user, setUser] = useState({ name: 'Jane Doe', age: 30 }); const handleNameChange = (newName) => { setUser({ ...user, name: newName }); // Create a new object with updated name }; return (); } export default UserProfile;Name: {user.name}
Age: {user.age}
handleNameChange(e.target.value)} />
Class component example:
import React, { Component } from 'react'; class UserProfile extends Component { state = { user: { name: 'Jane Doe', age: 30 } }; handleNameChange = (newName) => { this.setState(prevState => ({ user: { ...prevState.user, name: newName } // Create a new object with updated name })); }; render() { return (); } } export default UserProfile;Name: {this.state.user.name}
Age: {this.state.user.age}
this.handleNameChange(e.target.value)} />
In both examples, we're updating the name property of the user object while preserving the original object's integrity. This ensures that a new state object is created, preserving immutability and preventing potential issues with state updates. Adherence to this ensures predictable behavior, performance optimizations, and easier debugging.
The functional approach is generally considered more concise and readable, and it often suffices due to simplicity and efficiency. However, class components offer more control over state management and lifecycle methods, especially when dealing with intricate logic or performance optimization. This means better structure for organizing complex logic.
The choice between class and functional components is not always clear-cut, as there is no strict rule. Evaluate the requirements of your component and go with the type that aligns best with your project requirements.
Which component do you enjoy working with more?
Disclaimer: All resources provided are partly from the Internet. If there is any infringement of your copyright or other rights and interests, please explain the detailed reasons and provide proof of copyright or rights and interests and then send it to the email: [email protected] We will handle it for you as soon as possible.
Copyright© 2022 湘ICP备2022001581号-3